• Title/Summary/Keyword: Adjustable windings

Search Result 7, Processing Time 0.019 seconds

Induction Motor with Adjustable Windings for High Efficiency Drive in Light Load Operation

  • Zhang, Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.508-513
    • /
    • 2014
  • Heavy load start but light load operation is a common case in practical drive applications. When an induction motor is employed for such applications, its rated power is usually chosen according to the heavy load start. Then, during light load operation, its efficiency and power factor are low. To solve this problem, it is proposed to adjust the motor windings from the startup to the normal operation conditions. In this paper, arrangement of the adjustable windings is introduced, air gap field with different windings is investigated, and steady state operation performance under various loads is examined. It can be seen that by using proper winding arrangement both startup and operation performances are satisfactory.

Vibration and Acoustic Noise Reduction Method of SRM Using Auxiliary Winding (보조권선 활용에 의한 SRM의 진동 및 소음 저감 방안)

  • 정태욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.548-556
    • /
    • 2003
  • Switched reluctance motor(SRM) has simple magnetic structure, and needs simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase. In the vibration and acoustic noise characteristics. the considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural frequency of mechanical structure. This radial vibration force is generated by abrupt change of radial magnetic force in the phase commutation region. This paper studied about simple electromagnetic structure of SRM using auxiliary compensating winding for the reduction of noise and vibration. This auxiliary winding is coupled with all phase windings electromagnetically and absorb and transfer magnetic energy variation from phase to other phase. By this interaction of phase windings and compensating winding can reduce abrupt radial force change and vibration and acoustic noise. In this paper the improvement effect is examined by the test of prototype machine.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

Speed Control for Single Phase Induction Motor Using Phase Angle (위상각제어에 의한 단상유도전동기의 속도제어)

  • 임영철;김광헌;최찬학;나석환;정영국;장영학;장학충
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.41-50
    • /
    • 1995
  • Single-phase induction motors are widely used in many light duty applications, especially in home and office. many applications which use these motors require adjustable speed control continuously. In general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques are inefficient and complicated. In this paper, Torque controller which adjusts a generating torque using phase difference between main winding voltage and auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and torque. Simulation results of the torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. and the drive is tested experimentally to verify the results of the theory by using a dynamometer.

  • PDF

A Study on the Insulation Characteristics for Stator Windings of IGBT PWM Inverter-Fed Induction Motors

  • Hwang, Don-Ha;Kang, Dong-Sik;Kim, Yong-Joo;Lim, Tae-Hoon;Bae Sung-Woo;Kim Dong-Hee;Ro Chae-Gyun
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • The winding insulation of low-voltage induction motors in adjustable-speed drive system with voltage-fed Inverters is substantially stressed due to the uneven voltage distribution and excessive voltage stress (dv/dt), which result in the premature insulation breakdown In this paper, the detailed insulation test results of 26 low-voltage induction motors are presented. Six different types of insulation techniques are applied to 26 motors. The insulation characteristics are analyzed with partial discharge, discharge inception voltage, AC current, and dissipation factor tests Also, insulation breakdown tests by high voltage pulses are performed, and the corresponding breakdown voltages obtained.

The Analysis on the Switching Surge of High-voltage Induction Motor fed by Inverter Using EMTP (EMTP를 이용한 인버터 구동 고압 유도전동기의 스위칭 써지 특성 분석)

  • Song, Seung-Yeop;Kim, Jae-Chul;Shin, Joong-Eun;Kwon, Young-Mok;Hwang, Don-Ha
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.58-62
    • /
    • 2004
  • The PWM inverter drive my cause motor terminals voltage surge and oscillation(ringing), which impose severe electric stresses on inter-turn insulation of motor windings. This paper describes the technique used to simulate the problems associated with the use of PWM ASD's(Adjustable Speed Drive) to drive induction motor. The characteristic of switching surge was analyzed by EMTP(Electromagnetic transient program) model. The effects of switching surge by surge impedance, rise-time and cable lengths are also discussed.

  • PDF

The design of a torque controller for single phase induction motor using phase angle (위상각제어에 의한 단상유도전동기의 토크제어기설계)

  • Lim, Y.C.;Choi, C.H.;Na, S.H.;Jung, Y.G.;Chang, H.C.;Chang, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.908-911
    • /
    • 1993
  • The single-Phase induction motor is widely used in many light duty applications. especially in home and the office. At present, many applications which use these motor require continuously adjustable speed control. In the general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques is inefficient and complicated. In this paper, auxiliary winding voltage phase angle of single-phase induction motor is used to continuously adjust electromagnetic torque. The analysis includes the determination of the relationship between the auauxiliary winding voltage phase angle and torque. Simulation results of the motor's torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. The drive is tested using a dynamometer to experimentally verify the results of the theory and simulations.

  • PDF