• Title/Summary/Keyword: Adjacent structure

Search Result 854, Processing Time 0.032 seconds

Pounding between adjacent buildings of varying height coupled through soil

  • Naserkhaki, Sadegh;El-Rich, Marwan;Aziz, Farah N.A. Abdul;Pourmohammad, Hassan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.573-593
    • /
    • 2014
  • Pounding between adjacent buildings is a significant challenge in metropolitan areas because buildings of different heights collide during earthquake excitations due to varying dynamic properties and narrow separation gaps. The seismic responses of adjacent buildings of varying height, coupled through soil subjected to earthquake-induced pounding, are evaluated in this paper. The lumped mass model is used to simulate the buildings and soil, while the linear visco-elastic contact force model is used to simulate pounding forces. The results indicate while the taller building is almost unaffected when the shorter building is very short, it suffers more from pounding with increasing height of the shorter building. The shorter building suffers more from the pounding with decreasing height and when its height differs substantially from that of the taller building. The minimum required separation gap to prevent pounding is increased with increasing height of the shorter building until the buildings become almost in-phase. Considering the soil effect; pounding forces are reduced, displacements and story shears are increased after pounding, and also, minimum separation gap required to prevent pounding is increased.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI (SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.23-38
    • /
    • 2018
  • Up to now, most of studies on seismic analysis have been limited to analyze buildings and underground structures individually so that the interaction between them could not be analyzed effectively. Thus, in this study, a dynamic analysis was conducted for soil-structure interaction with a complex underground facility composed of a building and an adjacent underground structure constructed on a surface soil and the bed rock ground conditions. Seismic stability was analyzed based on interstory drift ratio and bending stress of structure members. As a result, an underground structure has more effect on a high-rise building than a low-rise building. However the above structures were proved to be favorable for seismic stability. On the other hand, tensile bending stresses exceeded the allowable value at the underground part of the building and the adjacent underground structure so that it turned out that the underground part could be weaker than the above part. Therefore, it is inferred that above and underground structures should be analyzed simultaneously for better prediction of their interaction behavior during seismic analyses because there exist various structures around buildings in big cities.

Comparative Analysis of Fish Community Structure between Eelgrass (Zostera marina L.) Beds and an Adjacent Unvegetated Area in Southern Korea

  • Kim, Jeong-Bae;Ryu, Jung-Hwa;Kim, Jin-Koo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.60-69
    • /
    • 2009
  • Fish community structure between eelgrass beds and an adjacent unvegetated area was investigated. Fishes were collected monthly from two eelgrass beds (Gamak and Yeoja Bays) and one adjacent unvegetated area in the southern sea of Korea between February 2006 and February 2007. The number of species for the Gamak and Yeoja Bays were 33, 28, respectively, while 28 species were identified from the unvegetated area. Leiognathus nuchalis was dominant in both Gamak and Yeoja Bays, while Engraulis japonicus was dominant in the unvegetated area. Cluster analysis conducted on total number of individuals for each species produced 3 groups; group A (appeared only in winter regardless of eelgrass), group B (appeared in eelgrass beds during all seasons except winter) and group C (appeared in the unvegetated area during all seasons except winter). The most important differentiating species between eelgrass beds and the unvegetated area were Lateolabrax japonicus, L. nuchalis, Takifugu niphobles and Pholis nebulosa. Based on the results of this study we can assume that eelgrass beds function as a nursery ground for young fishes from spring to fall, but not in winter.

Efficient Vibration Control Approach of Two Identical Adjacent Structures (동일한 인접구조물의 효율적 진동제어방안)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.56-63
    • /
    • 2014
  • This study proposes a new control approach for efficient vibration suppression of two identical adjacent structures. The conventional control approach of two adjacent structures is to interconnect the two structures with passive, semi-active or active control devices. However, when the two adjacent structures are identical to each other, their dynamical behaviors such as frequency and damping properties are also the same. In this case, the interconnected control devices cannot exhibit the dissipative control forces on the both structures as expected since the relative displacements and velocities of the devices become close to zero. In other words, the interconnection method does not work for the twin structures as enough as expected. In order to solve this problem, we propose several new control approaches to effectively and efficiently reduce the identically-fluctuating responses of the adjacent structures with minimum control efforts. In order to demonstrate the proposed control systems, the proposed several control systems are optimally designed and their control performances are compared with that of the conventional optimal control system where each TMD(tuned mass damper) is installed in each structure for independent control purpose. The simulated results show that one of the proposed control systems(System 04) is able to guarantee enhanced control performance compared with the conventional system.

Case Study of Damage Behavior in Urban Excavation (도심지 흙막이 굴착시 손상거동에 대한 대책공법사례)

  • Kim, Man-Ha;Chae, Young-Su;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.330-335
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed a countermeasure method for case of damage behavior in urban excavation.

  • PDF

Ground Movement Analysis by Field Measurements (현장계측에 의한 지반거동 분석)

  • Chon, Yong-Back;Cho, Sang-Wan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.161-168
    • /
    • 2005
  • This study is analysis for adjacent structures and ground movement by deep excavation work. Underground Inclinometer has shown that deformation of increment is minor within to allowable limit. According to the measurements result of slope and crack for adjacent structures, a detached house showed bigger than hospital structure to deformation of increment. Variation of underground water level didn't effect so much to ground and adjacent structures movement because underground water flows in rock and didn't give the water press to propped walls. Measurement data of strut variation is within tolerance limit. Because excavation site's wall was strengthened suitably. This study will contribute in establishment of measurement standard and information-oriented construction during deep excavation in multi-layered ground including rock masses.

  • PDF

Case Study of Structure Damage due to Adjacent Deep Excavation (깊은 굴착에서 근접시공에 따른 구조물 피해사례 연구)

  • 김성욱;김주봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.113-120
    • /
    • 1999
  • Deep excavation,1 in the urban areas may cause terrible damages to the adjacent structures. Most damages are due to the settlement of ground during excavation work. This article introduces two actual examples of structure damage in subway construction projects. A through of attempts to find out the factors that are affecting to the settlement of ground was made through site investigations and analyses of measurement data. Some suggestions are given to prevent the repeat of trial and error in deep excavation projects. This kind of attempts are eccentrical to the development and improvement of information-oriented construction method.

  • PDF

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition (LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조)

  • Lee, Jun-Ho
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF