• Title/Summary/Keyword: Adjacent ground excavation

Search Result 135, Processing Time 0.033 seconds

Analysis of Correlation Between Wonhyo Tunnel(section of KTX line) Works and Swamp (경부고속철도 천성산구간 원효터널공사와 늪지와의 상관성 분석)

  • Ham, Dong-Sun;Kim, Byeong-Ho;Jeon, Byeong-Gyoo;Kim, In-Soo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1838-1844
    • /
    • 2007
  • The Wonhyo Tunnel on KTX railroad line is a section of latest concerns from domestic environmental NGOs, which focus on potential destruction of ecosystem or the like due to ever-depleted swamp water at about 300m upward from the tunnel under construction. As a result of study, out of all swamps in the vicinity of the tunnel, it was found that Mujechi 1st and 2nd swamps have been getting smaller in their area little by little since 50 years ago primarily under the influence of eroded streams around lower swamp and even ever-increasing annual mean temperature. As the result of monitoring about swamp before work, it was found that swamp water depends absolutely on amount of rainfall. Besides, the results of monitoring during work also didn't show any leakage generated in the tunnel during and after excavation works with regard to a wheat field swamp in the most vicinity of the tunnel (80m away). On the other hand, it was found that the range affected by ground water sink in tunnel section without grouting process amounted to about 100m around the tunnel, which indicates that such ground water sink has no significant impact upon most of swamps near the tunnel. As the result of testing by two well tracer test around swamps, it was noted that swamp water didn't run out from the bottom of swamp even with adjacent ground water level sunk in factitious ways. And the results of physical survey showed that swamp kept saturated even in dry season when ground water level becomes lower than the bottom of swamp. Therefore, even supposing that ground water level becomes sunk due to tunnel works, it is estimated that the water level of swamps would be still kept owing to impervious layer(peat beds).

  • PDF

A Study on Design of Earth-Retaining Structure Constructed by a Row of Bored Piles (주열식(柱列式) 흙막이벽(壁)의 설계(設計)에 관한 연구(研究))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 1985
  • A row of bored piles has been used in several excavation works to retain the earth. This excavation bracing system has much effect on low-vibration and low-noise during construction. The system is also effective to provide protection to the adjacent existing ground and structures. For the purpose of establishment of a logical design method for the bored piles, first, a theoretical equation to estimate the resistance of piles is derived. Because arching action of soils between piles is considered in the equation, the characteristics of soils and the installation condition of piles would be considered logically from the beginning. Then a method is investigated to decide the interval ratio of piles. According to the method, the interval between piles can be decided from the information of the Peck's stability number, the coefficient of lateral earth pressure and the internal friction angle of soil. Finally, a design method is presented for the bored piles used for excavation work. In the presented design method, such factors as depth of excavation, pile diameter, interval between piles, pile length below bottom of excavation and pile stiffness, can be selected systematically.

  • PDF

Behavior of tunnel adjacent to weak zone by using scaled model test (축소모형실험을 이용한 연약대층 근접 터널의 거동)

  • Lee, Dong-Seok;Joen, Jae-Hyun;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.231-246
    • /
    • 2012
  • Recently, the construction of tunnel frequently involves neighboring weak ground conditions. In this case, the stabilized ground could be relaxed by the excavation of tunnel. This will create issues in terms of stability of tunnel. Major factors determining the stability of tunnel can be the direction (angle) of weak zone, the distance between tunnel and boundary of weak zone and so on. In this study, by quantifying the displacement and crack propagation during the excavation of tunnel constructed neighboring weak zone, the influence of the direction of weak zone and the distance between tunnel and boundary of weak zone on the mechanical behavior of tunnel is investigated. A series of experimental scaled model tests by changing the direction of weak zone and the distance between tunnel and boundary of weak zone, are performed and analyzed under the condition of homogeneous material. The results show that as the angle between ground surface and boundary of weak zone moves from horizontal to perpendicular plane, displacement near tunnel increases. An increased distance between tunnel and boundary of weak zone induces displacements near tunnel to decrease and stabilizes beyond a certain level of distance. These findings verify and extend the earlier studies quantitatively. Finally, an appropriate distance between tunnel and boundary of weak zone according to the angle of weak zone is justified. This fundamental insight provides the basis for a more rational design of tunnel neighboring weak ground conditions.

Study on the Application of Semi-open cut Top-Down Construction for Framework (세미 오픈컷 역타공법의 현장적용에 관한 연구)

  • Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Construction methods for underground structure are classified as bottom-up, up-up, and top-down methods depending on the procedure of construction related to a superstructure. In top-down construction methods, building's main structure is built from the ground level downwards by sequentially alternating ground excavation and structure construction. In the mean time, the main structure is also used as supporting structure for earth-retaining wall, which results in the increased stability of the earth-retaining wall due to the minimized deformation in adjacent structures and surrounding grounds. In addition, the method makes it easy to secure a field for construction work in the downtown area by using each floor slabs as working spaces. However top-down construction method is often avoided since an excavation under the slab has low efficiency and difficult environment for work, and high cost compared with earth anchor method. This paper proposes a combined construction method where semi-open cut is selected as excavation work, slurry as earth -retaining wall and CWS as top-down construction method. In the case study targeted for an actual construction project, the proposed method is compared with existing top-down construction method in terms of economic feasibility, construction period and work efficiency. The proposed construction method results in increased work efficiency in the transportation of earth and sand, and steel frame erection, better quality management in PHD construction, and reduced construction period.

A Study on the Safety Assessment of Adjacent Structures Caused by Tunnel Excavation in Urban Area -Focused on the Characteristics of Geometries and Locations for Nearby Building- (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (1) -지상 건물의 기하학적 및 위치적 특성을 중심으로-)

  • 김창용;문현구;배규진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.19-42
    • /
    • 1999
  • In urban area, there are several major factors to be considered in tunnel design and construction. The first is to predict the magnitude and distribution of ground movements for particular ground conditions and construction procedures. The second is to assess the potential damage to nearby structures in response to the predicted ground movements. The third is to select the measures to be taken if a potential damage is foreseen. This study is concerned primarily with the first and second stages of the problem. Particularly, this paper is focused on the second stage to assess the potential damage to the nearby building with any type of geometries and locations above ground surface. In order to solve this problem, we introduced damage parameters(angular distortion, deflection ratio, maximum building settlements, maximum differential settlements, horizontal strain, etc.), and extended these parameters into 3-dimensional safety assessment. Also, to assess the safety of any walls existing in the building, we developed a 3-dimensional analysis program, and various parametric studies for the nearby building with any type of geometries and locations were presented. In addition to these parametric studies, we compared the results of the proposed techniques with some abroad case records for particular tunnels and adjacent buildings.

  • PDF

A study on degree of inclination of model pile due to tunnelling (터널굴착에 따른 모형말뚝의 기울기 정도 연구)

  • Lee, Yong-Joo;Hwang, Jae-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • In this study, both the model test and the numerical analysis were carried out to figure out the physical behaviour of the model pile during the tunnelling. As a result, both the vertical and the horizontal displacements were simultaneously occurred in the model pile which is subjected to the working load during the volume loss. Consequently, the phenomenon of inclination took place in the model pile. The degree of inclination of the model pile depends on volume loss due to tunnel excavation, pile tip's offset from the tunnel centre, and bearing ground conditions in which pile tip is located. Therefore, in the planning stage of urban tunnelling not only the ground behaviour with respect to the pile locations, but also the physical behaviour of pile itself should be carefully analysed to avoid damage of adjacent buildings.

A Case Study on the Shaft Construction Using Electronic Detonators (전자뇌관(HiTRONIC II™)을 이용한 수직구 시공 사례)

  • Hwang, Nam-Sun;Jin, Geun-Woo;Yeo, Jin-Hyeok;Jeong, Dong-Ho;Kim, Yeon-Hong
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.22-35
    • /
    • 2020
  • Recently, electronic detonators have been widely used in various sites. Electronic detonators are often used for the purpose of reducing the noise and vibration produced by blasting. In addition, electronic detonators are used for precision blasting at sites where mechanical excavation techniques are applied due to proximity of safety things or where blasting by conventional detonators are not possible. Various technologies are being attempted at the blasting site to increase constructivity and lower production costs by using electronic detonators. In this paper, we would like to introduce a construction case that use of electronic detonators in the situation of safety things being adjacent increases the efficiency of construction while meeting the ground vibration criteria of Ministry of Land, Infrastructure, and Transport. The blasting was carried out at domestic and overseas shaft using HiTRONIC II™, produced by Hanwha. Generally the shaft blasting is performed by dividing the blasting surface because of the noise and vibration caused by the blasting. but, in the case introduced in this paper, the blasting was carried out once without dividing the blasting surface, thus the construction period could be shortened.

A study on the optimum range of reinforcement in tunneling adjacent to structures (구조물 근접 터널시공시 최적의 보강범위에 관한 연구)

  • Lee, Hong-Sung;Kim, Dae-Young;Chun, Byung-Sik;Jung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.199-211
    • /
    • 2009
  • Development of underground space is actively performed globally for better life in the surface, and the scale of the space is increasing. Extreme care should be taken in the construction of the underground space in urban areas in order to avoid damage of adjacent structures and interference with existing underground space. In case of shallow tunnels, reinforcement of ground and structures is necessary to minimize the damage to structures due to excavation but any standard for optimum range of the reinforcement has not been established yet. In this paper, a series of numerical analyses have been performed for a 20 m diameter tunnel excavated underneath a structure to investigate the degree of damage of the structure according to vertical and horizontal spacing between the tunnel and structure. In addition to that, optimum range of reinforcement is presented for each case where reinforcement is required. It has been observed that the reinforcement is necessary for the ground condition adapted in the analyses as follows: (1) if horizontal spacing ($S_{H}$) approaches to 0D (D: equivalent diameter of tunnel) for vertical spacing (Sv) of 0.5D, and (2) if tunnel exists underneath the structure for vertical spacing (Sv) of 0.75D. The reinforcement is not necessary for Sv of 10 regardless of $S_{H}$. It also has been obtained that the optimum ranges of the reinforcement around structure foundation are 7 m in depth and whole width of the structure and 5 m beyond tunnel sidewall. These reinforcememt ranges have been confirmed to be enough for stability of the structure if types of reinforcement method is appropriately selected.

A Case Study of Tunnel Electronic Blasting to Control Vibration in the Proximity of the Gas Pipe (매설 가스관 근접 진동제어를 위한 터널 전자발파 시공사례)

  • Choi, Hyeong-Bin;Kim, Gab-Soo
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.25-31
    • /
    • 2013
  • In this case of "Seongnam~Yeoju double-lanes railroad construction", there were resident houses and gas pipe which were concerned about damages from vibration and noise. Especially, gas pipe which is a diameter of ${\varphi}500mm$ was located under the ground along upside road. The limit of vibration was 1.0cm/sec to protect gas pipe. The electronic blasting systems have been used to control vibration & noise not only gas pipe but also resident houses. The results of tunnelling were successfully conducted with effective vibration control and quick excavation by electronic blasting without any damages to adjacent facilities.

Effect of blast-induced vibration on a tunnel (발파진동이 터널구조물에 미치는 영향)

  • Moon, Hoon-Ki;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.207-219
    • /
    • 2008
  • In urban areas, it is very often to excavate ground adjacent to existing structures for the construction of new buildings. Deformation and vibration induced by such construction activities may cause damages to the existing structures and petitions from citizens. To secure safety of the existing structures, particularly of tunnels, establishment of general guidelines on vibration have been crucial concerns, although some institutions have their own guidelines which are not generally accepted. This study aims establishing guidelines for tunnel safety due to blast-induced vibration. Numerical methods are adopted for this study. Blast load equation proposed by International Society of Explosive Engineers (2000) is used to decide detonation pressure. Analysis models were obtained from the construction cases of Seoul Metros. By performing dynamic numerical analysis, vibration velocity of an existing tunnel is evaluated. The numerical results are verified by comparing with the field measurement data obtained in excavation sites adjacent to an existing tunnel. Based on the results vibration safety zone is proposed. Influence circle for vibration velocity is drawn and the area not exceeding the allowable vibration velocity is established.

  • PDF