• Title/Summary/Keyword: Adjacent excavation

Search Result 215, Processing Time 0.025 seconds

A Study on Damage Assessment Technique of Railway Bridge Substructure through Dynamic Response Analysis (동적 응답 분석을 통한 철도교량 하부구조의 피해평가기법연구)

  • Lee, Myungjae;Lee, Il-Wha;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, scale down model bridge piers were fabricated and non-destructive experiments conducted with an impact load to determine scours in the ground adjacent to the bridge piers using the natural frequency of the bridge piers. Three scale-model bridge piers with different heights were fabricated, and they penetrated the ground at a depth of 0.35 m. The scours around the bridge piers were simulated as a side scour and foundation scour. The experiments were conducted in 13 steps, in which scouring around the model bridge piers was performed in 0.05 m excavation units. To derive the natural frequency, the impact load was measured with three accelerometers attached to the model bridge piers. The impact load was applied with an impact hammer, and the top of the model bridge pier was struck perpendicularly to the bridge axis. The natural frequency according to the scour progress was calculated with a fast Fourier transform. The results demonstrated that the natural frequency of each bridge pier tended to decrease with scour progress. The natural frequency also decreased with increasing pier height. With scour progress, a side scour occurred at 70% or higher of the initial natural frequency, and a foundation scour occurred at less than 70%.

Evaluation on Damage Effect of Concrete Track induced by Underground Structure Displacement Behavior (지하구조물 변위거동에 따른 콘크리트궤도의 손상영향 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.839-844
    • /
    • 2024
  • This study analytically analyzed the impact of underground structure displacement behavior on track damage due to adjacent excavation work, ground deterioration, and changes in groundwater level. The concrete track that was the subject of the study was analyzed for sleeper floating track(STEDEF) and precast concrete slab track(B2S). Sleeper floating track is a track structure in which the concrete bed and sleepers are voided. precast concrete slab track is a track structure that induces the elastic behavior of the rail by assembling rails and fasteners using slabs. For numerical analysis, each concrete track, from rail to concrete bed, was modeled as three-dimensional elements. In addition, the displacement behavior of the underground structure was set as a variable to analyze the damage effect on the concrete bed. Using numerical analysis, the concrete bed stress due to uplift and subsidence was analyzed, and the level of crack effect was analyzed by comparing it to the tensile strength and shear strength. As a result of the analysis, it was found that the sleeper floating track was more vulnerable than the precast concrete slab track when the same uplift and subsidence occurred. In addition, uplift and subsidence, it was analyzed that the cracks range in the sleeper floating track was large.

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Influence of the Existing Cavern on the Stability of Adjacent Tunnel Excavation by Small-Scale Model Tests (축소모형시험을 통한 공동이 근접터널 굴착에 미치는 영향평가)

  • Jung, Minchul;Hwang, Jungsoon;Kim, Jongseob;Kim, Seungwook;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.117-128
    • /
    • 2014
  • Generally, when constructing a tunnel close to existing structures, the tunnel must be built at a constant distance from the structures that is more than width of tunnel to minimize the impact of interference between an existing structures and new tunnel. Spacing of these closed tunnels should be designed considering soil state, size of tunnel and reinforcement method. Particularly when the ground is soft, a care should be taken with the tunnel plans because the closer the tunnel is to the existing structures, the greater the deformation becomes. As methods of reviewing the effect of cavities on the stability of a tunnel, field measurement, numerical analysis and scaled model test can be considered. In the methods, the scaled model test can reproduce the engineering characteristics of a rock in a field condition and the shape of structures using the scale factor even not all conditions cannot be considered. In this study, when construction of a tunnel close to existing structures, the method and considering factors of the scaled model test were studied to predict the actual tunnel behavior in planning stage. Furthermore, model test results were compared with the numerical analysis results for verifying the proposed model test procedure. Also, practical results were derived to verify the stability of a tunnel vis-a-vis cavities through the scaled model test, which assumed spacing distances of 0.25 D, 0.50 D, and 1.00 D between the cavities and tunnel as well as the network state distribution. The spacing distances of 1.0 D is evaluated as the critical distance by the results of model test and numerical analysis.

Dispersion of Standing Stones at Noseongsan(Mt.Noseong) and Aspect of the Stone Decorated Garden(Soo-suk Jeongwon) at Chongsuk-Sa(Chongsuk Buddhist Temple) in Nonsan City (논산 노성산(魯城山)의 입석(立石) 분포와 총석사(叢石寺) 수석(樹石)의 정원적 면모)

  • Rho, Jae Hyun;Huh, Joon;Jang, Il Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.160-189
    • /
    • 2010
  • This study has been designed to grasp the present situation, shapes and meaning of the standing stones and rock pillars in the whole area of Noseong Mountain Fortress in Nonsan City which have never been academically reported yet. Accordingly, the research was carried out to grasp the spatial identity of Noseong Mt. and Noseong Mountain Fortress and the dispersion of standing stones scattered around inside and outside Noseong Mountain Fortress, while the shapes and structural characteristics of stones were investigated and analyzed focusing on Chongsuk Temple, which was considered to have the highest density of standing stones and greatest values for preservation as a cultural property. In consideration of the reference to the 'Top Sa' (tower temple) at the 'Bul Woo Jo' (Article about Buddhism Houses) of 'Shinjoong Dongguk Yeoji Seungram', theoretical existence of the temple according to surveying investigation, and the excavation records of roof tile pieces with the name of 'Gwan Eum Temple', it is presumed that there had been a Buddhist sanctum inside the fortress and it could be connected to the carved letters, 'Chongsuk Temple'. According the observation survey, the 6th place of standing stones among many other places inside the fortress shows that Chongsuk Temple appears to have the strong characteristics of artificially constructed space in consideration of the size of trees and stones, the composite trend of tree and stone composition, and trace of the adjacent well and strand and the construction of stairway leading to the stone gate. Along with the constellation of the Big Dipper carved on a rock at the same space, the stones, on which the letters of 'Shinseonam', 'Chilseongam' and 'Daejangam' were carved, including 'Chongsuksa', and the carved statue of Buddha, which was assumed to be Avalokitesvara Guan Yin, have offered clue which make it possible to infer that the space was a space for Chilseong and Mountain god(Folk Belief) that had originated from the combination of Buddhism, Taoism and folk religion. According to the actual measurement of standing stones at Chonsuk Temple, it was identified that there were big differences in height among 24 stones in total, ranging from 402~29cm and the averaged distance between each stone appeared to be 23.6cm. And the shape of stones appeared to be standing or flat, and various stones such as mountain-like stones and Buddha-like stones were placed in a special arrangement or assorted arrangement, but the direction of the stones had a consistency pointing to the west. And comparing to the trace of construction of ZEN Landscape Garden well known in the country, the three flat stones except for the standing and shaped stones appeared to have the shape of meditation statue, which is the typical formational factors of a ZEN Landscape Garden, on the basis of formational technique of stones. Among them, the flat stone facing the Buddhist saint statue, was formed by way of symbolization of three-mountain stone, which was assumed to be an offering stone for sacrificial food rather than carrying out ZEN Meditation. In consideration of the formation of standing stones at Chong-suk Temple, which was carried out in the composite stoning method based using the scalene triangle with ratio of 3:5:7 in order to seek the in-depth beauty based on the stone statues of three Buddhas where the three factors such as heaven, earth and humans are embodied in the elevated or flat formation, the stones at Chongsuk Temple and the space seemed to the trace of contracted garden construction that was formed with stones for a temple, so that could be used for ZEN meditation.