• Title/Summary/Keyword: Adipose tissue-derived stem cells

Search Result 96, Processing Time 0.022 seconds

Osteogenic Differentiation of Human Adipose-derived Stem Cells within PLGA(Poly(D,L-lactic-co-glycolic acid)) Scaffold in the Nude Mouse (누드 마우스에서 Poly(D,L-lactic-co-glycolic acid) (PLGA) 지지체 내 인체 지방줄기세포의 골성분화)

  • Yoo, Gyeol;Cho, Sung Don;Byeon, Jun Hee;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Purpose: The object of this study was to evaluate the development of continuous osteogenic differentiation and bone formation after the subcutaneous implantation of the tissue-engineered bone, in vitro. Methods: Human adipose-derived stem cells were obtained by proteolytic digestion of liposuction aspirates. Adipose-derived stem cells were seeded in PLGA scaffolds after being labeled with PKH26 and cultured in osteogenic differentiation media for 1 month. The PLGA scaffolds with osteogenic stimulated adipose-derived stem cells were implanted in subcutaneous layer of four nude mice. Osteogenesis was assessed by RT-PCR for mRNA of osteopontin and bone sialoprotein(BSP), and immunohistochemistry for osteocalcin, and von Kossa staining for calcification of extracellular matrix at 1 and 2 months. Results: Implanted PLGA scaffold with adipose-derived stem cells were well vascularized, and PLGA scaffolds degraded and were substituted by host tissues. The mRNA of osteopontin and BSP was detected by RT-PCR in both osteogenic stimulation group and also osteocalcin was detected by immunohistochemistry at osteogenic stimulation 1 and 2 months, but no calcified extracellular deposit in von Kossa stain was found in all groups. Conclusion: In vivo, it could also maintain the characteristics of osteogenic differentiation that adipose-derived stem cells within PLGA scaffold after stimulation of osteogenic differentiation in vitro, but there were not normal bone formation in subcutaneous area. Another important factor to consider is in vivo, heterologous environment would have negative effect on bone formation as.[p1]

Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration

  • Forte, Antonio Jorge;Boczar, Daniel;Sarabia-Estrada, Rachel;Huayllani, Maria T.;Avila, Francisco R.;Torres, Ricardo A.;Guliyeva, Gunel;Aung, Thiha;Quinones-Hinojosa, Alfredo
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.559-567
    • /
    • 2021
  • The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study's goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.

BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP (HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구)

  • Rim, Jae-Suk;Gwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Seok;Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema

  • Cho, Ryeon Jin;Kim, You-Sun;Kim, Ji-Young;Oh, Yeon-Mok
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.

Hepatic Differentiation of Human Eyelid Adipose-Derived Stem Cells (사람의 눈지방유래 줄기세포의 간세포 분화)

  • Park, Soo-Yeon;Park, Se-Ah;Kang, Hyun-Mi;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.183-194
    • /
    • 2008
  • A variety of stem cells has been emerging as therapeutic cells that can replace organ transplantation in human liver diseases. The present study focused on whether human eyelid adipose-derived stem cells (HAD) might differentiate into functional hepatocyte-like cells in vitro. HAD were isolated from human eyelid adipose tissue. Effect of dimethyl sulfoxide (DMSO), fibroblast growth factor (FGF)-2 and FGF-4 on the hepatic differentiation of HAD have been examined in vitro. Immunocytochemical analysis and PAS staining showed that HAD cultured in both DMSO and FGF-4 exhibited the most intense staining than HAD of the other experimental groups. These HAD expressed numerous hepatocyte-related genes. Immunoblotting analyses showed that HAD cultured in the presence of DMSO and FGF-4 secreted higher amount of human albumin than HAD cultured in other conditions. Urea analysis also demonstrated that these HAD produced higher amount of urea than any other groups of HAD. In conclusion, combined treatment of DMSO and FGF-4 could effectively induce the functional differentiation of HAD into hepatocyte-like cells.

  • PDF

Flow cytometric immunophenotyping of canine adipose-derived mesenchymal stem cells (ADMSCs) and feline ADMSCs using anti-human antibodies

  • Ko, Minho;Lee, Kwon Young;Kim, Sae Hoon;Kim, Manho;Choi, Jung Hoon;Im, Wooseok;Chung, Jin Young
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.33-37
    • /
    • 2018
  • Various trials have been conducted to develop therapies for serious untreatable diseases. Among these, those using stem cells have shown great promise, and adipose-derived mesenchymal stem cells (ADMSCs) are easier to obtain than other types of stem cells. Prior to clinical trials, characterization of ADMSCs with monoclonal antibodies should be performed. However, it is difficult to use species-specific antibodies for veterinarians. This study was conducted to confirm the panel of human antibodies applicable for use in immunophenotypic characterization of canine adipose-derived stem cells and feline ADMSCs extracted from subcutaneous adipose tissue collected during ovariohysterectomy. For flow cytometric immunophenotyping, the third passages of canine ADMSC and feline ADMSC and human CD31, CD34, CD42, CD44, CD62 and CD133 antibodies were used. Of these, CD133 reacted with canine cells (3.74%) and feline cells (1.34%). CD133 is known as a marker related with more primitive stem cell phenotype than other CD series. Because this human CD133 was not a species-specific antibody, accurate percentages of immunoreactivity were not confirmed. Nevertheless, the results of this study confirmed human CD133 as a meaningful marker in canine and feline ADMSCs.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.