• 제목/요약/키워드: Adiabatic temperature

검색결과 408건 처리시간 0.025초

초기재령 고강도콘크트의 수화발열과 자기수축 특성의 상관관계에 관한 기초적 연구 (A Fundamental Study on the Correlationship between Hydration Heat and Autogenous Shrinkage of High Strength Concrete at an Early Age)

  • 김규용;이의배;구경모;최형길
    • 콘크리트학회논문집
    • /
    • 제20권5호
    • /
    • pp.593-600
    • /
    • 2008
  • 본 연구에서는 초기재령 고강도콘크리트의 수화발열 및 자기수축 특성의 상관관계를 분석하기 위해 수화발열 및 자기수축의 초기특성을 대표할 수 있는 계수로서 수화발열상승구간 및 자기수축증가구간의 직선 기울기인 수화발열상승속도 및 자기수축증가속도를 설정하였으며, 이 두 계수는 통계적 수법을 활용하여 일정 범위의 결정계수를 갖는 회귀계수로 산정하였다. 또한 수화발열 특성과 자기수축 특성을 동시에 평가하기 위한 시험 방법으로서 기존의 간이단열온도상승시험을 보완한 시험 방법을 제안하였으며, 본 시험 방법을 통해 실험을 실시하여 실측데이터를 분석한 결과, 고강도콘크리트의 수화발열 및 자기수축에 대한 초기재령 특성을 수치적으로 나타내는 것이 가능하였으며 자기수축을 수화발열 특성을 나타내는 계수의 함수식으로 제시하는 것이 가능하였다.

금속선을 삽입한 N-5복기 추진제의 연소 특성 (A Study on the Burning Characteristics of N-5 Propellant Embedded with Metal Wires)

  • 유지창;박영규;김인철
    • 한국추진공학회지
    • /
    • 제3권1호
    • /
    • pp.78-85
    • /
    • 1999
  • 복기 추진제인 N-5 추진제에 4종의 금속선(Ag, Cu, Al, Ni-Cr선)을 삽입하여 연소 특성을 고찰하여 보았다. 금속선이 삽입된 복기 추진제의 연소속도 증가비($r_w$/$r_sb$)는 Ag선 > Cu선 > Al선 > Ni-Cr선의 순으로서 금속선의 열확산 계수의 크기 순과 일치하였다. 금속선을 삽입한 N-5추진제의 $r_w$/$r_sb$는 단열 불꽃 온도와 구조의 차이에 의하여 혼합형 추진제보다 작게 나타났다. 복기 추진제에 열확산 계수가 비교적 큰 Ag, Cu, Al선을 삽입한 경우, 금속선이 삽입되지 않은 추진제에서 나타난 plateau와 mesa 연소 특성이 사라진 반면 열확산 계수가 작은 Ni-Cr선을 삽입한 경우에서는 plateau와 mesa 연소 특성이 그대로 존재했다.

  • PDF

규불화염계 수화열 저감제가 첨가된 시멘트 모르타르의 수화열 변화 및 균열저감 특성 (Hydration Heat and Crack-Reducing Properties of Cement Mortar Added Fluosilicate Salt Based Hydration Heat Reducer)

  • 김진용;이효송;이영우;김도수;이병기;길배수;한승구
    • 한국세라믹학회지
    • /
    • 제42권3호
    • /
    • pp.198-204
    • /
    • 2005
  • 본 연구에서는 규불화염, 가용성 실리카, 방향족계 고분자 축합물 그리고 잠열특성을 지닌 질산염계 무기화합물로 구성된 규불화염계 수화열 저감제를 시멘트 모르타르의 수화열 및 건조수축에 미치는 영향을 조사하였다. 규불화염계 수화열 저감제의 첨가로 시멘트 모르타르의 단열상승온도 및 건조수축에 의한 길이변화가 저감되는 특성을 나타내었다. 또한, 규불화염계 수화열 저감제가 첨가된 판상형 시멘트 모르타르 시험체의 균열 패턴을 측정한 결과, 수화열 저감과 건조수축에 의해 길이변화가 저감되는 복합적 효과를 통해 시멘트 모르타르의 균열저감성이 개선되는 것을 확인하였다.

고압터빈 노즐 압력면에서의 확장 형상 막냉각 홀 배열 최적설계 (Design Optimization of Fan-shaped Film Cooling Hole Array on Pressure Side Surface of High Pressure Turbine Nozzle)

  • 이상아;이동호;강영석;김진욱;서도영;이관중
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.52-58
    • /
    • 2014
  • In the present work, design optimization of film-cooling hole array on the pressure side of high pressure turbine nozzle was conducted. There are four rows of fan-shaped film cooling holes on the nozzle pressure side surface and each row has a straight array of holes in the spanwise direction for baseline model. For design optimization, hole distributions in streamwise and spanwise directions for three rows of holes except first row are parameterized as a 2nd-order shape function. Three-dimensional compressible RANS equations are used for flow and thermal analysis around the nozzle surface and optimization technique using Design of Experiment, Kriging surrogate model and Genetic Algorithm is used. The results shows that averaged adiabatic wall temperature at the whole nozzle surface decreases about 2.7% and averaged film cooling effectiveness at the pressure side of nozzle increased about 8.2%.

정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정 (Measurements of sooting in single droplet combustion under the normal-gravity condition)

  • 이경욱;이창언;오수철
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).

나선 그루브와 평관형 열사이폰의 응축열전달 성능 향상에 관한 연구 (A Study on the Improvement of the Condensation Heat Transfer Performance of the Helical Grooved and Plain Thermosyphons)

  • 한규일;박종운;조동현
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.47-53
    • /
    • 2006
  • This study concerns the performance of condensation heat transfer in plain and grooved thermosyphons. Distilled water, methanol, ethanol have been used as the working fluids. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A study was carried out with the characteristics of heat transfer of the thermosyphon 50, 60, 70, 80, 90 helical grooves in which boiling and condensation occur. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the kinds of working fluid, the inclination angle, grooves and operating temperature have been used as the experimental parameters. The experimental results show that the number of grooves, the amount of the working fluid, the kind of working fluid, angle of inclination angle are very important factors for the operation of thermosyphon. The maximum heat transfer was obtained when the liquid fill was about 20 to 25 % of the thermosyphon volume. The relatively high rates of heat transfer have been achieved in the thermosyphon with grooves. The helical grooved thermosyphon having 70 to 80 grooves in water, 60 to 70 grooves in methanol and 70 to 80 grooves in ethanol shows the best heat transfer coefficient in both condensation.

  • PDF

쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구 (The Study on High Performance of Offshore Concrete Using Crushed Stone Fines)

  • 장준호;정용욱
    • 해양환경안전학회지
    • /
    • 제15권2호
    • /
    • pp.135-142
    • /
    • 2009
  • 본 연구는 고성능콘크리트의 강도조절과 수화열 저감을 위하여 쇄석 쇄사 생산시 발생되는 쇄석미분말을 사용하여 고성능콘리트의 강도, 유동성 내구성능 및 건조수축 특성을 검토한 것이다. 실험결과 쇄석미분말은 치환율 10% 증가시마다 무치환시의 압축강도를 약 $10{\sim}15%$씩 감소시키며, 변형계수와 물구속비를 감소시켜 고성능콘크리트의 유동성 향상에 효과적이다. 또한, 고성능콘크리트에서 쇄식미분말 10% 치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 $4^{\circ}C$씩 감소시켰다. 반면 건조수축랑은 10% 치환시마다 약 5% 증가시키는 것으로 나타났다. 한편 고성능콘크리트의 내구성은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석미분말의 치환에 관계없이 상대동탄성계수 100%이상으로 우수하게 나타났다. 이와 같이 문제로서 쇄석미분말의 사용은 치환량에 따른 고성능콘크리트의 강도조절이 가능하며 수차 발열량을 저감시킬 수 있다.

  • PDF

격판을 가진 밀폐공간내의 자연대류 열전달에 공간 및 격판의 경사가 미치는 영향 (Effects of Inclination of Enclosure and Partition on Natural Convective Heat Transfer in a Partitioned Enclosure)

  • 정인기;송동주;김점수
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.302-314
    • /
    • 1994
  • The effects of the inclination of enclosure and partition on natural convective flow and heat transfer were investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). The effects of the inclination angle of enclosure and partition on the heat transfer within an enclosure were also studied. As the results, the increase of the inclination angle of enclosure rapidly raised the heat transfer rate, while the inclination angle for the maximum Nusselt number was retarded with the increase of the partition length and the decrease of the heat transfer rate became larger in proportion to the increase of the partition length. The Nusselt number obtained by the inclination of partition was smaller than that of the inclination of enclosure. However, the difference of the heat transfer rates was considerably decreased at the longer partition lengths and the trends for the variation of the average Nusselt number were more similar with that of the inclination of enclosure. The upward oriented partition increases the convective heat transfer distinctly in contrast to that of the inclination of enclosure as the partition length increases.

  • PDF

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향 (Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF