• Title/Summary/Keyword: Adhesive Joints

Search Result 207, Processing Time 0.024 seconds

The Effects of Surface Roughness and Bond Thickness on the Fatigue Life of Adhesively Bonded Tubular Single Lap Joints (비틀림 접착 조인트의 피로 수명에 대한 표면 조도와 접착 두께의 영향)

  • Gwon, Jae-Uk;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2022-2031
    • /
    • 2000
  • Since the surface roughness of adherends affects much the strength of adhesivelybonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by fatigue torsion test. The stiffness of the interfacial layer between adherends and adhesive was modeled as a normal statistical distribution function of surface roughness of adherends. From the investigation, it was found that the optimum surface roughness of adherends for the fatigue strength of tubular single lap joints was dependent on bondthickness and applied load.

Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints (접착이음의 계면균열에 대한 파괴인성 및 평가방법)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF

Effect of NBR Component on Adhesion Behaviors between NBR and Metal Joints Using Phenol Adhesive (페놀 수지를 이용한 NBR/냉연강판 접착계에 미치는 NBR 조성의 효과)

  • Lee, Dong-Won;Park, Hae-Youn;Yu, Young-Jae;Kang, Dong-Gug;Seo, Kwan-Ho
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The adhesion behaviors and processability of NBR as a sealing material were investigated. In order to find the optimum formulation, the adhesive properties and processability were observed as the change of the contents of acrylonitrile (ACN) in NBR. Effects of Mooney viscosity, filler, plasticizer and crosslinking agent on the adhesion behaviors were also studied. The contents of ACN in NBR have great effects on adhesion behaviors and processability in NBR sealing. To know the optimum condition of roll mixing, degree of dispersion was investigated. It was confirmed that degree of dispersion was influenced by various factors such as mixing order, time, and temperature. The crosslinking system was studied as the observation of sulfur system, peroxide system, crosslinking density, and structure. From the variation of the dry condition and hexamine contents, the relation between adhesive and NBR was studied. These results show the adhesion properties and processability are dependent on the contents of ACN and crosslinking system.

Improvement of Reliability of COG Bonding Using In, Sn Bumps and NCA (NCA 물성에 따른 극미세 피치 COG (Chip on Glass) In, Sn 접합부의 신뢰성 특성평가)

  • Chung Seung-Min;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.21-26
    • /
    • 2006
  • We developed a bonding at low temperature using fine pitch Sn and In bumps, and studied the reliability of the fine pitch In-Sn solder joints. The $30{\mu}m$ pitch Sn and In bumps were joined together at $120^{\circ}C$. A non conductive adhesive (NCA) was applied during solder joining. Thermal cycling test ($0^{\circ}C-100^{\circ}C$, 2 cycles/h) of up to 2000 cycles was carried out to evaluate the reliability of the solder joints. The bondability was evaluated by measuring the contact resistance (Rc) of the joints through the four point probe method. As the content of filler increased, the reliability improved in the solder joints during thermal cycling test because the contact resistance increased little. The filler redistributed the stress and strains from the thermal shock over the entire joint area.

  • PDF

Micro Bonding Using Hot Melt Adhesives

  • Bohm, Stefan;Hemken, Gregor;Stammen, Elisabeth;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2006
  • Due to the miniaturization of MEMS and microelectronics the joining techniques also have to be adjusted. The dosing technology with viscous adhesives does not permit reproducible adhesive volumes, which are clearly under a nano-liter. A nano-liter means however a diameter of bonding area within the range of several 100 micrometers. Additional, viscous adhesives need a certain time, until they are cross linked or cured. The problem especially in the MEMS is the initial strength, since it gives the time, which is needed for joining an individual adhesive joint. The time up to the initial strength is with viscous, also with fast curing systems, within the range of seconds until minutes. Until the reach of the initial strength, the micro part must be fixed/held. Without sufficient adjustment/clamping it can come to a shift of the micro parts. Also existing micro adhesive bonding processes are not batch able, i.e. the individual adhesive joints of a micro system must be processed successively. In the context of the WCARP III 2006 now an innovative method is to be presented, how it is possible to solve the existing problems with micro bonding. i.e. a method is presented, which is batch able, possess a minimum joining geometry with some micrometers and is so fast that no problems with the initial strength arise. It is a method, which could revolutionize the sticking technology in the micro system engineering.

  • PDF

Strength evaluation of adhesive joint with thermal stress using ultrasonic signal processing method (열응력이 발생하는 접착이음부에서의 초음파 신호처리기법을 이용한 강도평가)

  • Oh, Seung-Kyu;Hawng, Yeong-Taik;Jang, Chul-Sub;Oh, Sun-Sae;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.534-540
    • /
    • 2001
  • One approach to testing the suitability of an adhesive joint for a particular application is to build and test to destruct ion a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to strength. It is therefore, essential that a suitable nondestructive test is chosen and that its results are correctly interpreted. In this paper, typical defects found in adhesive joints are described together with their significance. The limits and likely success of current physical nondestructive tests are described, and future trends outlined.

  • PDF

Recent Advances in Conductive Adhesives for Electronic Packaging Technology (전도성 접착제를 이용한 패키징 기술)

  • Kim, Jong-Woong;Lee, Young-Chul;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Conductive adhesives have recently received a lot of focus and attention from the researchers in electronics industry as a potential substitute to lead-containing solders. Numerous studies have shown that the conductive adhesives have many advantages over conventional soldering such as environmental friendliness, finer pitch feasibility and lower temperature processing. This review focuses on the recent research trends on the reliability and property evaluation of anisotropic and non-conductive films that interconnect the integrated circuit component to the printed circuit board or other types of substrate. Major topics covered are the conduction mechanism in adhesive interconnects; mechanical reliability; thermo-mechanical-hygroscopic reliability and electrical performance of the adhesive joints. This review article is aimed at providing a better understanding of adhesive interconnects, their principles, performance and feasible applications.

  • PDF

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Fatigue Resistance Improvement of Welded Joints by Bristle Roll-Brush Grinding

  • Kim, In-Tae;Kim, Ho-Seob;Dao, Duy Kien;Ahn, Jin-Hee;Jeong, Young-Soo
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1631-1638
    • /
    • 2018
  • In the periodic repainting of steel bridges, often the steel surface has to be prepared by using power tools to remove surface contaminants, such as deteriorated paint film and rust, and to increase the adhesive strengths of the paint films to be applied newly. Surface preparation by bristle roll-brush grinding, which is a type of power tool, may additionally introduce compressive residual stress and increase the fatigue resistance of welded joints owing to the impact of rotating bristle tips. In this study, fatigue tests were conducted for longitudinally out-of-plane gusset fillet welded joints and transversely butt-welded joints to evaluate the effect of bristle roll-brush grinding prior to repainting on the fatigue resistance of the welded joints. The test results showed that bristle roll-brush grinding introduced compressive residual stress and significantly increased fatigue limits by over 50%.