• Title/Summary/Keyword: Adenosine A1 receptor

Search Result 175, Processing Time 0.026 seconds

Acer okamotoanum inhibits adipocyte differentiation by the regulation of adipogenesis and lipolysis in 3T3-L1 cells

  • Ji Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • International Journal of Molecular Medicine
    • /
    • v.45 no.2
    • /
    • pp.589-596
    • /
    • 2020
  • Acer okamotoanum is reported to have various antioxidant, anti-inflammatory and beneficial immune system effects. The anti-adipocyte differentiation effects and mechanisms of the ethyl acetate (EtOAc) fraction of an A. okamotoanum extraction was investigated in 3T3-L1 adipocyte cells. Treatment with differentiation inducers increased the level of triglycerides (TGs) in 3T3-L1 adipocyte cells compared with an untreated control. However, the EtOAc fraction of A. okamotoanum significantly decreased TGs. Treatment with 1, 2.5 and 5 ㎍/ml showed weak activity, but TG production was inhibited at 10 ㎍/ml compared with the control. In addition, A. okamotoanum caused a significant downregulation of proteins related to adipogenesis, such as γ-cytidine-cytidine-adenosine-adenosine-thymidine/enhancer binding protein-α, -β and peroxisome proliferator-activated receptor-γ, compared with the untreated control. Furthermore, A. okamotoanum significantly upregulated lipolysis related protein, hormone-sensitive lipase and the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Therefore, these results indicate that A. okamotoanum suppressed adipogenesis and increased lipolysis and the activation of AMPK, suggesting a protective role in adipocyte differentiation.

Antiplatelet effects of scoparone through up-regulation of cAMP and cGMP on U46619-induced human platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.425-431
    • /
    • 2019
  • Platelet activation is essential for hemostatic process on blood vessel damage. However, excessive platelet activation can cause some cardiovascular diseases including atherosclerosis, thrombosis, and myocardial infarction. Scoparone is commonly encountered in the roots of genus Artemisia or Scopolia, and has been studied for its potential pharmacological properties including immunosuppression and vasorelaxation, but antiplatelet effects of scoparone have not been reported yet. We investigated the effect of scoparone on human platelet activation prompted by an analogue of thromboxane A2, U46619. As the results, scoparone dose-dependently increased cyclic adenosine monophosphate (cAMP) levels as well as cyclic guanosine monophosphate (cGMP) levels, both being aggregation-inhibiting molecules. In addition, scoparone strongly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), substrates of cAMP dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by scoparone resulted in inhibition of Ca2+ mobilization in calcium channels in a dense tubular system, and phosphorylation of VASP by scoparone led to an inability of fibrinogen being able to bind to αIIb/β3. Finally, scoparone inhibited thrombin-induced fibrin clotting, thereby reducing thrombus formation. Therefore, we suggest that scoparone has a strong antiplatelet effect and is highly probable to prevent platelet-derived vascular disease.

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.

Inverse Agonists at $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐의 뇌의$A_1$ 아데노신 수용체에 작용하는 역효현제에 관한 연구)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • According to the traditional receptor model, competitive antagonists share with agonists the ability to bind to a common site on receptors, but they are different from agonist in that they cannot trigger the biological response-i.e., they lack intrinsic efficacy. Recent findings extend the model by indicating that not all antagonists display an intrinsic efficacy of zero but that some display 'inverse agonism'. In the present study we studied the inverse agonism at $A_1$ adenosine receptors in membranes prepared from rat cerebral cortex. Eight commercially available $A_1$ adenosine receptor antagonists (CGS-15943, ADPX, CPT, DPCPX, DPX, N-0840, PACPX and 8-PT) were screened for inverse agonism by measuring the extent of $[^{35}S]guanosine-5'-({\gamma}-thio)$ triphosphate $([^{35}S]GTP_{\gamma}S)$ binding to G proteins. The agonist-induced stimulation of $[^{35}S]GTP_{\gamma}S$ bindings was completely blocked in the presence of $A_1$ adenosine receptor antagonists. Under optimal conditions, two types of antagonists could be distinguished. Seven antagonists including DPCPX decreased the basal $[^{35}S]GTP_{\gamma}S$ binding in the absence of agonist, displaying inverse agonist activity. One (CGS-15943) had no effect on the basal bindings. N-ethylmaleimide treatment reduced the basal bindings as well as agonist-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ bindings, indicating that a substantial amount of this binding reflects an activated state of the C proteins. In good agreement with these findings, 0.1 mM GTP decreased the apparent affinity of the receptors for the agonist PIA, increased that for DPCPX, and had no effect on that for CGS-15943.

  • PDF

The Effect of ATP-sensitive Potassium Channel on R-PIA Induced Mechanical Antiallodynia in a Peripheral Neuropathic Rat (신경병증 통증 모델의 백서에서 R-PIA의 기계적 항이질통 효과와 ATP-감수성 칼륨 통로와의 연관성에 대한 연구)

  • Min, Hong Gi;Seong, Seung Hye;Jung, Sung Mun;Shin, Jin Woo;Gwak, Mi Jung;Leem, Jeong Gill;Lee, Cheong
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Background: Nerve ligation injury may produce mechanical allodynia, but this can be reversed after an intrathecal administration of adenosine analogues. In many animal and human studies, ATP-sensitive potassium channel blockers have been known to reverse the antinociceptive effect of various drugs. This study was performed to evaluate the mechanical antiallodynic effects of spinal R-PIA (Adenosine A1 receptor agonist) and the reversal of these effects due to pretreatment with glibenclamide (ATP-sensitive potassium channel blocker). Thus, the relationship between the antiallodynic effects of R-PIA and ATP-sensitive potassium channel were investigated in a neuropathic model. Methods: Male Sprague Dawley rats were prepared by tightly ligating the left lumbar 5th and 6th spinal nerves and implantation of a chronic lumbar intrathecal catheter for drug administration. The mechanical allodynia was measured by applying von Frey filaments ipsilateral to the lesioned hind paw. And the thresholds for paw withdrawal assessed. In study 1, either R-PIA (0.5, 1 and $2{\mu}g$) or saline were administered intrathecally for the examination of the antiallodynic effect of R-PIA. In study 2, glibenclamide (2, 5, 10 and 20 nM) was administered intrathecally 5 min prior to an R-PIA injection for investigation of the reversal of the antiallodynic effects of R-PIA. Results: The antiallodynic effect of R-PIA was produced in a dose dependent manner. In study 1, the paw withdrawal threshold was significantly increased with $2{\mu}g$ R-PIA (P < 0.05). In study 2, the paw withdrawal threshold with $2{\mu}g$ R-PIA was significantly decreased almost dose dependently by intrathecal pretreatment of 5, 10 and 20 nM glibenclamide (P < 0.05). Conclusions: These results demonstrated that an intrathecal injection of ATP-sensitive potassium channel blockers prior to an intrathecal injection of adenosine A1 receptors agonist had an antagonistic effect on R-PIA induced antiallodynia. The results suggest that the mechanism of mechanical antiallodynia, as induced by an intrathecal injection of R-PIA, may involve the ATP-sensitive potassium channel at both the spinal and supraspinal level in a rat nerve ligation injury model.

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Relationship of Action of Adenosine Triphosphate and Prostaglandin $F_{2{\alpha}}$ on Uterine Smooth Muscle Motility in Immature Pig (미성숙 돼지 자궁 평활근의 운동성에 대한 Adenosine Triphosphate와 Prostaglandin $F_{2{\alpha}}$ 작용의 관계)

  • Kim, Joo-Heon;Kwun, Jong-Kuk;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.31-39
    • /
    • 1988
  • This study was carried out to investigate the action of adenosine triphosphate (ATP) on the motility of immature pig uterine smooth muscle. ATP appeared contractile responses in a dose-dependent manner, showing the maximal contraction at the concentration of $10^{-3}M$ in the uterine smooth muscle strip. The contractile responses by $ATP(10^{-4}M)$ were not affected by atropine $(10^{-6}M)$, phentolamine $(10^{-6}M)$, propranolol $(10^{-6}M)$, pyrilamine $(10^{-6}M)$, cimetidine $(10^{-6}M)$, and theophyulline $(5{\times}10^{-5}M)$, but were inhibited uncompetitively by quinidine. The effects of these drugs on the contractile responses by prostaglandin $F_{2{\alpha}}(PGF_{2{\alpha}})$ were also comparable to those observed with ATP. When muscle strips were pretreated with indomethacin $(5{\times}10^{-5}M)$ for 20 min., the contractile responses by $ATP(10^{-4}M)$ were completely inhibited. But the contractile responses by $PGF_{2{\alpha}}$ were not affected by indomethacin. These results suggest that ATP elicited the contraction through noncholinergic- and nonadrenergic-receptor mediated by prostaglandin $F_{2{\alpha}}$ in pig uterine smooth muscle.

  • PDF

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Cordycepin protects against β-amyloid and ibotenic acid-induced hippocampal CA1 pyramidal neuronal hyperactivity

  • Yao, Li-Hua;Wang, Jinxiu;Liu, Chao;Wei, Shanshan;Li, Guoyin;Wang, Songhua;Meng, Wei;Liu, Zhi-Bin;Huang, Li-Ping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.483-491
    • /
    • 2019
  • Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. ${\beta}$-Amyloid ($A{\beta}$) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in $A{\beta}$ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine $A_1$ receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the $A{\beta}$ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of $A_1R$ is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.