• Title/Summary/Keyword: Additive Manufacturing

Search Result 463, Processing Time 0.024 seconds

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process (DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성)

  • Yu-Jeong An;Ju-Yeon Han;Hyunjoo Choi;Se-Eun Shin
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

Prediction of the Mechanical Properties of Additively Manufactured Continuous Fiber-Reinforced Composites (적층제조 연속섬유강화 고분자 복합재료의 물성 예측)

  • P. Kahhal;H. Ghorbani-Menghari;H. T. Kim;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • In this research, a representative volume element (RVE)-based FE Model is presented to estimate the mechanical properties of additively manufactured continuous fiber-reinforced composites with different fiber orientations. To construct the model, an ABAQUS Python script has been implemented to produce matrix and fiber in the desired orientations at the RVE. A script has also been developed to apply the periodic boundary conditions to the RVE. Experimental tests were conducted to validate the numerical models. Tensile specimens with the fiber directions aligned in the 0, 45, and 90 degrees to the loading direction were manufactured using a continuous fiber 3D printer and tensile tests were performed in the three directions. Tensile tests were also simulated using the RVE models. The predicted Young's moduli compared well with the measurements: the Young's modulus prediction accuracy values were 83.73, 97.70, and 92.92 percent for the specimens in the 0, 45, and 90 degrees, respectively. The proposed method with periodic boundary conditions precisely evaluated the elastic properties of additively manufactured continuous fiber-reinforced composites with complex microstructures.

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.

Influence of Surface Roughness on Friction and Wear Characteristics of SUS 321 for Hydraulic Cylinder Parts Application

  • Sung-Jun Lee;Yonghun Jang;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • This paper presents a comprehensive analysis of the impact of surface roughness on the friction and wear properties of SUS 321, an austenitic stainless steel variant produced using the laser powder bed fusion (LPBF) technique, which is a prevalent additive manufacturing method. After the LPBF fabrication, the specimens go a heat treatment process aimed at alleviating residual stress. Subsequently, they are polished extensively to achieve a refined and smooth surface. To deliberately introduce controlled variations in surface roughness, an etching process is employed. This multi-step method encompassed primary etching in a 3M hydrochloric acid solution, followed by secondary etching in a 35 wt% ferric chloride solution, with varying durations applied to different specimens. A comprehensive evaluation of the surface characteristics ensued, employing precise techniques such as surface roughness measurements and meticulous assessments of water droplet contact angles. Following the surface treatment procedures, a series of friction tests are performed to explore the tribological behavior of the etched specimens. This in-depth investigation reached its peak by revealing valuable insights. It clarified a strong correlation between intentionally altered surface roughness, achieved through etching processes, and the resulting tribological performance of LPBF-fabricated SUS 321 stainless steel. This significantly advances our grasp of material behavior in tribological applications.

Reduction Kinetics of Gold Nanoparticles Synthesis via Plasma Discharge in Water

  • Sung-Min Kim;Woon-Young Lee;Jiyong Park;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.386-392
    • /
    • 2023
  • In this work, we describe the reduction kinetics of gold nanoparticles synthesized by plasma discharge in aqueous solutions with varied voltages and precursor (HAuCl4) concentrations. The reduction rate of [AuCl4]- was determined by introducing NaBr to the gold colloidal solution synthesized by plasma discharge, serving as a catalyst in the reduction process. We observed that [AuCl4]- was completely reduced when its characteristic absorption peak at 380 nm disappeared, indicating the absence of [AuCl4]- for ligand exchange with NaBr. The reduction rate notably increased with the rise in discharge voltage, attributable to the intensified plasma generated by ionization and excitation, which in turn accelerated the reduction kinetics. Regarding precursor concentration, a lower concentration was found to retard the reduction reaction, significantly influencing the reduction kinetics due to the presence of active H+ and H radicals. Therefore, the production of strong plasma with high plasma density was observed to enhance the reduction kinetics, as evidenced by optical emission spectroscopy.

Customized spacers in provisional treatment of temporomandibular joint ankylosis: a case report

  • Caio Augusto Munuera Ueti;Felipe Burigo Daniel Dos Santos;Murillo Chiarelli;Luiza Brum Porto;Matheus Brum Marques Bianchi Savi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.3
    • /
    • pp.166-169
    • /
    • 2024
  • Ankylosis of the temporomandibular joint (TMJ) is a condition in which the mandibular condyle fuses with the mandibular fossa through fibrous or bone tissue. It is a debilitating pathology that interferes with chewing, speaking, and oral hygiene. Currently, alloplastic reconstruction is considered the gold standard for treating severely compromised TMJs, such as in ankylosis. The article describes a patient with a history of facial trauma, with bilateral ankylosis of the TMJs, inability to open his mouth, and poor dental condition. Due to a long period of immobilization of approximately 40 years, the initial treatment plan was to remove the ankylosis bilaterally and install customized PMMA (polymethylmethacrylate) spacers. The patient gained mouth opening and improved chewing quality with one year of customized spacer use prior to definitive alloplastic replacement with stock-type TMJ prostheses. Customized joint spacers are a provisional treatment option when definitive alloplastic reconstruction is not indicated. Spacers provide the patient with progressive jaw function and mobility gains.

Investigation of Requirement and Demand toward for Functional Traditional Hangwa(Korean Cookies) of Tradition (기능성 전통 한과류 요구도 및 수요도 조사)

  • Bok, Hye-Ja;Choi, Soo-Keun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.5
    • /
    • pp.692-701
    • /
    • 2008
  • This study was conducted with 150 adults of 20 years or older, all of whom lived in Seoul. The awareness of traditional Hangwa (Korean cookies) was shown to be relatively low, with 2.9 points on average, and the intake of traditional Hangwa for a month was 2.1 times. For the reason that traditional Hangwa couldn't become popular, and the opinion that the reason was because the price is expensive was the highest, at 3.8. The next highest reasons given were because it is difficult to buy, and because it is inconvenient to eat, at 3.0. The traditional Hangwa was shown to enjoy positive awareness as opposed to negative awareness, while the manufacturing sanitation was also recognized to be relatively clean, with 2.6 points assigned to the opinion that it doesn't taste good, and 2.7 points assigned to the opinion that the manufacturing sanitation is unclean. With regard to the excellence of traditional Hangwa, the response that 'our tradition can be handed down' was the most often encountered, with a score of 3.9. The traditional Hangwa was appraised as excellent, with 3.6 points assigned to the opinion 'it suits our body because it is made with our agricultural products' and 3.4% for each opinion 'safe ingredients are used' and 'all ingredients are good for health'. With regard to the level of agreement for the development of functional traditional Hangwa, the positive group was higher than 25.3% of the negative group, with 27.3% for 'agree very much' and 22.0% for 'agree'. When converted into a 5-point scale for the development of functional traditional Hangwa, the group that was positive toward its development was high, with 3.4 points on average. All categories of excellence awareness were correlated with the level of agreement for the development of a functional food product (p<0.001). Consumer awareness toward the addition of traditional Hangwa functionality was generally positive, with 3.3 points or higher on average, and awareness of the aging suppression and diabetes control effects of Hangwa was also high, with 3.5 points. Next were Hangwa for diet, Hangwa for blood pressure control, Hangwa for mineral supple-mentation and vitamin additive-type Hangwa, with 3.4 for each, and Hangwa for health preservation, with 3.3 in order. With regard to the degree of interest toward functional traditional Hangwa for the treatment of diseases, obese patients cited aging suppression, at 3.2, and vitamin additive Hangwa, at 3.0, while Hangwa for dieting was assigned 2.8 points. Patients with high blood pressure, blood circulation, and diabetes were all shown as having a high degree of interest in all items, while evidencing particular interest toward Hangwa for diabetes control and Hangwa for blood pressure control. With regard to intention to purchase while developing functional traditional Hangwa, the group asserting intention to purchase was higher than 60% for all items except for Hangwa for diabetes control (58.7%). The Hangwa for aging suppression was highest, at 68.6%, and shown as having intention to purchase during development in the order of vitamin additive Hangwa at 68.0%, Hangwa for mineral supplementation at 64.6%, each of Hangwa for health preservation and Hangwa for blood pressure control at 62.7%, Hangwa for diet at 62.6% and Hangwa for diabetes control at 58.7%. The considerations during the development of functional traditional Hangwa were in the following order: storage at 4.1 points, taste and level of function at 3.9 points, size at 3.5 points, and packing at 3.4 points.

  • PDF

Application, Utilization and Management of Ozone Water in Food Manufacturing (식품 가공 공정에서의 오존수 관리 동향, 사용 실태 및 활용 방안)

  • Kim, Yong-Soo;Park, In-Sook;Kim, Ae-Young;Jeon, Kyoung-Min;Seo, Yu-Mi;Choi, Sung-Hee;Lee, Young-Ja;Choi, Hyoun-Chul;Jeon, Dae-Hoon;Kim, Hyoung-Il;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.98-107
    • /
    • 2008
  • The ozone has the oxidizing power which is powerful the fluorine and the antimicrobial spectrum of wide scope. Researches were carried out to use the merits that ozone has in various fields including the food industry, and many studies are also conducted nowadays for more efficient use of ozone. The ozone was permitted legally as a food additive and was practically used in the United States, Australia, Japanese etc. In November 2007, ozone water was permitted as a food additive in Korea and the interest in the use of ozone water has been on the rise in the Korea's food industry. As a olisinfectant method, ozone has many advantages. The maintenance and management expenses of ozone are lower than the installation cost at early stages and no by-products are generated after use it compared to others. Recently the demand of ozone as a olisinfectant method is increasing drastically. Although ozone water is popularly used to sterilize raw foods like fruits, vegetables and meats, the cases are still limited and were verified by the survey results. However, the use of ozone water is gradually being increased and is focused on food services. Ozone water refers to a state where ozone is dissolved into water to more conveniently use ozone. Accordingly, ozone water should be managed in regards with the amount and time of water-dissolved ozone, and the control of discharged ozone concentration is required for safe use of ozone water. The items to control mentioned above are directly related to the performance of the devices, and therefore, it is required to newly establish the performance criteria of ozone water manufacturing devices.