• Title/Summary/Keyword: Additional Machining

Search Result 51, Processing Time 0.031 seconds

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

A Study on Determining Post-machining System for RP parts with Web-based Interface Tool (웹기반 쾌속조형물후가공 선정시스템 개발에 관한 연구)

  • 이상호;안대건;양화준;장태식;이일엽;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1257-1260
    • /
    • 2003
  • Rapid Prototyping technology has many advantages such as Rapid Tooling. However, Using the RT technique is limited by the poor surface quality of the RP part. Thus, additional post-machining is required for improving the surface roughness by the sanding, grinding and polishing etc. But, these traditional finishing techniques are time and labor cost consuming. Hence, improving and formulation the finishing technique is inevitably necessary for the RF part. A new post-machining methodology for RP part is presented by the SLS part is used for automobile components in this research. Also, a web based interface tool that user requirements are rapidly ordered for post-machining RP part is developed.

  • PDF

Machining Cell Control Abstract Machine Tool (추상화된 공작기계를 이용한 가공셀 제어)

  • Lee, Chang-Ho;Sheen, Dong-Mok;Hahn, Hyung-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.85-94
    • /
    • 1999
  • Reconfiguration, expansion, or new establishment of FMS requires the availability of a shop floor control (SFC) system relevant to the FMS since it is closely related with the hardware component of FMS. Due to the expensive cost of its development, significant research efforts have been made to develop an SFC system that is reusable. This paper presents Abstract Machine Tool (AMT) approach applied to develop an SFC sytem that is reusable without additional programming. The AMT model enables us to design the SFC system independently of the hardware-dependent attributes of euqipment; an AMT models a workstation by abstraction and presents an equipment-independent interface to machining cell controller. Specifically, we describe how we formalize the interfaces among equipment in order to build an AMT and how we design the machining cell control software based on AMT models. We also present MACHINIST the machining cell control system for IAE-FMS plant as an implementation example.

  • PDF

A Study on Improving the Surface Roughness of Stereolithography Parts (광조형물의 표면조도 향상에 관한 연구)

  • 안대건;김호찬;정해도;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.196-203
    • /
    • 2004
  • SL(Stereolithography) part is made by piling up thin layers which causes the stair stepping effect at the surface of SL parts. The effect brings about excessive surface roughness and cuts down the merits of using SL part. Hence, additional post-machining finishing such as traditional grinding is required. But the traditional post-machining is detrimental to part geometry and time consuming. In this study, therefore, a paraffin coating and grinding post-machining is newly proposed to improve the surface quality of SL fart. The paraffin which has suitable properties for the proposed post-machining is coated all over the part surface. By grinding the only over-coated paraffin based on boundary of the SL part surface, the surface roughness can be improved without any damage on the part. Also, it is verified that SL part finished by the proposed post-machining process can be applied for rapid tooling as pattern through manufacturing silicon rubber molding and casting test.

Improvement of Electrical Discharge Drilling (방전드릴링의 가공특성 향상)

  • Song, Ki-Young;Chung, Do-Kwan;Park, Min-Soo;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.45-51
    • /
    • 2010
  • Electrical discharge drilling (ED-drilling) is a widespread machining method used to bore small holes with a high aspect ratio. This paper presents additional methods by which ED-drilling can improve machining speed, tool wear, and machined surface quality. Firstly, for high machining speed, and low tool wear, a new-type electrode that was ground on one side or both sides of the cylindrical electrodes was suggested to expel debris. The debris which is generated during the machining process can cause sludge deposition and secondary discharge problems: major reasons to decrease machining speed. This new-type electrode also reduced tool wear that was due to the decrease of unstable discharge in a machining gap by helping to expel waste water and debris from the gap. Secondly, to improve the machined surface roughness, an electrolyzation process was included after drilling. This process made the machined surface smooth by means of an electrochemical reaction between an electrode and a workpiece. In this study, the machining speed, electrode wear, and surface roughness were improved by the newtype electrode and the electrolytic process.

Development of Fine Blanking Dies for Forming Small Sized Module Gear (미소 모듈기어의 Fine Blanking 성형금형 개발)

  • Kim J. S.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.308-315
    • /
    • 2002
  • In recent automotive industries, fine blanking technology widely used in production of components with relatively thick gauges in brake systems, seat recliner, door locks, and auto transmission systems. Due to its advantages to obtain almost final product quality using fine blanking forming process without additional finish machining processes, consequently saving the production costs. In this paper we intended to develope the small sized module gear toothed dual seat recliner sector gear(0.5mm module) for car seats using fine blanking process which needed semi piercing with computer simulation and a lot of try and errors to achieve required accuracy and geometric quality. However through the some corrections of tool geometries with tryout test, we could get successful results.

  • PDF

Milling Cutter Selection in Machining Center Using AHP (AHP를 활용한 머시닝센터의 밀링커터 선정)

  • Lee, Kyo-Sun;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • The CNC machine tool field is showing a growing trend with the recent rapid development of manufacturing industries such as semiconductors, automobiles, medical devices, various inspection and test equipment, mechanical metal processing equipment, aircraft, shipbuilding and electronic equipment. However, small and medium-sized machining companies that use CNC machine tools are experiencing difficulties in increasingly intense competition. Especially, small companies which are receiving orders from 3rd or 4th venders are very difficult in business management. In recent years, company S experienced difficulty to make product quality and delivery time due to the ignorance of the processing method when manufacturing cooling plate jig made of SUS304 material used for cell phone liquid crystal glass processing. In order to solve these problems, we redesigned the process according to the size of our company and tried to manage all processes with quantified data. In the meantime, we have found that there is a need to improve the cutter process, which accounts for most of the machining process. Therefore, we have investigated the correlation between RPM and FEED of three cutters that have been used in the past. As a result, we found that it is the most urgent problem to solve the roughing process during the cutter operation which occupies more than 70% of the total machining. In order to shorten the machining time and improve the quality in machining of SUS304 cooling plate jig, we select the main factors such as price, tool life, maintenance cost, productivity, quality, RPM, and FEED and use AHP to find the most suitable milling cutter. We also tried to solve the problem of delivery, quality and production capacity which was a big problem of S company through experiment operation with selected cutter tool. As a result, the following conclusions were drawn. First, the most efficient of the three cutters currently available in the machining center has proven to be an M-cutter. Second, although one additional facility was required, it was possible to produce the existing facilities without additional investment by supplementing the lack of production capacity due to productivity improvement. Third, the Company's difficulties in delivery and capacity shortfalls have been resolved. Fourth, annual sales increased by KRW 109 million and profits increased by KRW 32 million annually. Fifth, it can confirm the usefulness of AHP method in corporate decision making and it can be utilized in various facility investment and process improvement in the future.