• Title/Summary/Keyword: Additional Combustion

Search Result 169, Processing Time 0.024 seconds

Review: Utilization of Coal Bottom Ash for Concrete and Mortar (총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용)

  • Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.333-348
    • /
    • 2020
  • The present review dealt with the state-of-art on utilization of coal bottom ash in cement-based concrete and mortar. Two types of bottom ashes generated from pulverized coal combustion and circulating fluidized-bed combustion systems have been considered. The production process, chemical and physical characteristics of both ashes, and the methodology of utilization in various cement composites are summarized. The effect of bottom ash on various properties of concrete, such as workability, strength, and durability, were reviewed from the literature. In addition, the environmental and economic aspects of utilizing bottom ash in concrete are analyzed to explore the perspectives of bottom ash utilization, and through this, the future of the utilization was considered. The effect of bottom ash on the performance of concrete and mortar was greatly depended on the condition, pretreatment, and processing of the ash. Additional processing such as crushing might contribute to stimulating the utilization in this field. In particular, if economic support is possible in terms of policy, utilization rate is expected to be improved.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

A Study on the Evaluation of Fuel Characteristic and Economic Benefit for Co-combustion of Dried Sewage Sludge with Coal (건조 하수슬러지의 석탄 혼소를 위한 연료특성 및 경제성 평가에 관한 연구)

  • Kang, Jeong Hee;Kang, Jong Yun;Lee, See Hyung;Kim, Byung Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A study on combustion characteristic and evaluation of cost benefit were carried out using dried sewage sludge to evaluate co-combustion with coal in a coal-fired power plant. In the result of proximate analysis, sewage sludge has 78.09%, 79.65% of moisture content in A STP(Sewage Treatment Plant) and B STP, respectively. The dried sewage sludges show 0.12, 0.14 of fuel ratio value, respectively and over 30,000kcal/kg of combustible index. It means that the dried sewage sludges needs to reform from the results of fuel ratio and combustible index. As a results of the economical benefit evaluation of dried sewage sludge, about 73.4 million won through using the dried sewage sludges instead of coal and 56.4 million won through REC(Renewable Energy Certificate) cost were saved, respectively. On the other hand, it occurs 4.2 million won of additional cost related to ash disposal and 2.6 million won of investment/operation cost for co-combustion facility. In conclusion, co-combustion of dried sewage sludges with coal in a coal-fired power plant saves about 123 million won. However, it needs to consider for power supply to produce dried sewage sludges and opportunity cost for environmental pollution and so on to evaluate more reasonable benefit of co-combustion.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Design and Experimental Verification of Uni-Injector Using Gas Methane and Lox as Propellants (가스메탄/액체산소를 추진제로 하는 단일 인젝터 설계 및 실험적 검증)

  • Jeon, Jun Su;Min, Ji Hong;Jang, Ji Hun;Ko, Young Sung;Kim, Sun Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.275-283
    • /
    • 2013
  • An injector that uses methane gas ($CH_4$) and liquid oxygen ($LO_x$) as propellants was designed to verify the combustion characteristics of an engine that uses methane, which is one of the next-generation propellants. A swirl/shear coaxial-type injector was used, and flow analysis was performed using Fluent to determine the main design parameters of the injector. A hydraulic test was performed to understand the atomization and spray pattern characteristics of the injector. Next, a combustion test was performed at the design point to understand the ignition and combustion stability. Additional combustion tests were performed according to the O/F ratio to investigate the combustion characteristics and stabilities using the characteristic exhaust velocity ($C^*$) and fluctuation of the chamber pressure. The experimental results showed that the combustion efficiency was greater than 90%, and the pressure fluctuation was lower than 2% under all conditions.

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

Numerical Simulation of the Liquid Flow in the Lower Part of the Blast Furnace - A Cold Flow Case (고로하부 액체유동에 대한 수치해석 사례 - 냉간유동)

  • Jin, Hong-Jong;Choi, Sang-Min;Jung, Jin-Kyung
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2008
  • The high permeability of the gas in the molten iron of the dripping zone of the blast furnace is a major factor in achieving the stable operation of a furnace with high productivity. Basic studies of the liquid flow behavior in a packed bed are necessary to grasp the effect of various operational changes on conditions in the dropping zone. Molten iron and slag together playa critical role in the lower zone, transporting mass and energy, while impairing and redistributing the gas flow. In turn, molten iron and slag undergo physical and chemical changes, and are redistributed radially as they descend to the hearth. In this research, mathematical formulations are derived for the gas and the liquid. The solid phase is fixed with constant porosity. The information for the molten iron and slag includes the hold-up, velocity, pressure, and information related to the areas of interaction between the gas and the liquid, and the solid and the liquid. Predictable results include the velocity, pressure and temperature distribution. Additional parameters include the packed particle size and the air blast rate.

  • PDF

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Engine Cycle Simulation for the Effects of EGR on Combustion and Emissions in a DI Diesel Engine (직분식 디젤엔진에서 EGR이 연소특성 및 배출가스에 미치는 영향에 대한 시뮬레이션 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2002
  • In this study, cycle simulation was performed to investigate the effect of EGR on combustion characteristics and emissions including NO and soot using a two-zone model in a DI diesel engine. The NO formation was well predicted for different EGR rate and temperature using a two-zone model. The oxygen in the inlet charge was replaced by CO$_2$ and H$_2$O with EGR. The reduction in the inlet charge oxygen resulted in very large reduction in NO level at the same inlet charge temperature. The effect of EGR was to reduce the burned gas temperature. When EGR was increased from 0% to 15%, the peak flame temperature was decreased by 50$\^{C}$ and it caused about 57% NO reduction. EGR caused increase of the overall inlet charge temperature which offset some of benefit of lower flame temperature resulting from O$_2$ displacement. Cooling the EGR was confirmed to provide additional benefits by lowering NO emission. It also reduced soot emission.

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.