• 제목/요약/키워드: Addition reaction

검색결과 4,214건 처리시간 0.031초

Mechanism on the Formation of Bis-9,9'-thioxanthenylmethane from the Reaction of Thioxanthylium Ion With Dimethylmercury(I)

  • Kim, Sung-Hoon;Kim, Kyong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권4호
    • /
    • pp.157-162
    • /
    • 1982
  • 9-Methylenethioxanthene(6) was synthesized and for the first time good mp and spectral data were taken. Reaction of (6) with thioxanthylium ion (1) in acetonitrile led to a carbenium addition adduct (8) which then was either attacked by a variety of nucleophiles subsequently added or underwent deprotonation reaction to give an olefin (13). From these reactions, was obtained bis-9,9'-thioxanthenylmethane (2). These results indicate clearly that (2) can be formed via (8) by accepting hydride. Isolation of (2) and (6) from the reaction of (1) with 9-methylthioxanthylium ion (18) also supports the involvement of (8) in the reaction of (1) with dimethylmercury. However, addition of thioxanthene radical (4) to (6) has not been ruled out.

유기티탄 화학 (제3보). 사염화티탄과 피페리딘 및 디페닐아민과의 반응 (Organotitanium Chemistry (Ⅲ). The Reactions of Titanium Tetrachloride with Piperidine and Diphenylamine)

  • 어용선;이후성;손연수
    • 대한화학회지
    • /
    • 제18권6호
    • /
    • pp.408-414
    • /
    • 1974
  • 사염화티탄과 피페리딘 및 디페닐아민의 반응을 반응생성물들을 분리하여 규명함으로써 설명하였다. 사염화티탄과 피페리딘은 부가반응과 치환반응이 다음과 같이 동시에 일어남을 알 수 있었다.$TiCl_4+C_5H_{10}NH{\to}TiCl_4{\cdot}C_5H_{10}NH$$TiCl_4+C_5H_{10}{\to}TiCl_3{\cdot}NC_5H_{10}+HCl$부가반응은 비교적 빨리 일어나며 수분내에 반응이 완결되는데 비하여 치환반응은 매우 느리게 일어난다. 위의 두 반응생성물을 모두 분리하여 화학분석결과와 핵자기공명 및 적외선 스펙트럼을 고찰 함으로써 완전히 규명하였다. 이들 반응생성물에는 모두 피페리딘의 염화수소염이 공침됨을 알 수 있었다. 그러나 디페닐아민의 경우, 위의 반응과 아주 비슷하게 일어나지만 부가반응 생성물은 순수하게 얻을 수 있었다.

  • PDF

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters

  • Moon, Hyoung-Wook;Kim, Dae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.291-295
    • /
    • 2011
  • The catalytic enantioselective conjugate addition reaction of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones promoted by chiral bifunctional organocatalysts is described. The treatment of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones afforded the corresponding Michael adducts with high enantioselectivity. The conjugate addition adducts are easily converted to chiral $\gamma$-nitro ketones and $\delta$-keto esters.

Kinetics and Thermodynamic Studies on the Reaction of Cysteine with Cinnamaldehyde

  • Kim, Tae-Rin;Yun, Se-Joon;Park, Byung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권1호
    • /
    • pp.25-29
    • /
    • 1986
  • The reaction of cysteine with cinnamaldehyde have been studied kinetically and thermodynamically. It was found that the reaction proceeds in two steps; formation of the monoadduct by a Michael type addition followed by the nucleophilic attack of the second cysteine to the carbonyl carbon of the monoadduct to afford the thiazolidine derivative. A reaction profile for the reaction of cysteine with cinnamaldehyde was constructed based on the thermodynamic parameters analyzed for the forward and the reverse reactions. It was assumed that the second step of this reaction accompanies an intermediate, a Schiff base.

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun;Li, Zhen;Sun, Qiao;Li, Ping;Wang, Weihua
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1934-1938
    • /
    • 2012
  • The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

(${\alpha}-Phenyl-N-iso-propylnitrone$유도체에 대한 Sodium Thiophenoxide의 친핵성 첨가반응 메카니즘과 그의 반응 속도론적 연구 (Kinetics and Mechanism of Nucleophilic Addition of Sodium Thiophenoxide to ${\alpha}-Phenyl-N-iso-Propylnitrone$ derivatives)

  • 이광일;김영주;곽천근;장병만;이기창
    • 한국응용과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 1995
  • The rate constant of Nucleophilic addition of sodium thiophenoxide to nitrone were determined by UV Spectrophotometry and a rate equation which can be applied over wide pH range was obtained. Base on the rate equation, general base effect, substituent effect and final product, plausible mechanism of addition reaction have been proposed. Blow pH 3.0, the reaction was initiated of thiophenol, and in the range of pH $3.0{\sim}10.0$, proceeded by the competitive addition of thiophenol and thiophenoxide anion. Above the pH 10.0, the reaction proceeded through the addition of a thiophenoxide anion.

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

Spontaneous Formation of Revival Waves in the 1,4-Cyclohexanedione-Bromate-Ferroin Reaction

  • Huh, Do-Sung;Kim, Young-Joon;Kim, Hye-Sook;Kang, Jong-Kon;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.267-270
    • /
    • 2004
  • The bromate-1,4-cyclohexanedione-ferroin oscillating reactions are uncovered to support two types of wave activities, in which spontaneous formation of circular waves has been achieved after the disappearance of initial waves. The induction period of the revival wave is typically above 10 hours and its dependence on the initial concentrations of reactants is qualitatively different from that of initial waves. In addition to their differences in propagating speed and wavelength, the initial waves and the revival patterns have different colors, suggesting that different reaction mechanisms are involved in the formation of these spatiotemporal behaviors. Our experiments further show that the addition of hydroquinone to the reacting system can significantly shorten the induction time of the revival wave, which implicates that hydroquinone is not only a product in the bromate-1,4-cyclohexanedione-ferroin oscillating reaction but also plays a critical role in the following reactions.

석탄회의 탄소가 첨가된 질화반응과 AlN, SiC 그리고 $Si_3N_4$의 생성분포 (Nitrogenation of Coal Ash in the Presence of Carbon and Product Distributions of AlN, SiC and $Si_3N_4$)

  • 양현수;홍원표;노재성;서동수;손응권
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.965-970
    • /
    • 1990
  • A nitrogenation of coal ash in the presence of carbon was carried out to examine the effects of reaction temperature, reaction time and carbon composition on the formation of AlN, SiC and Si3N4. Decreasing the particle size increased the formation of AlN and its maximum composition in the product was obtaiend under 1450~150$0^{\circ}C$, 2 hours of reaction time and about 30% of carbon addition(on the basis of sample weight). Compositions of SiC and Si3N4 were distributed to the opposite so that SiC showed a higher composition compared with Si3N4 at a lower temperature, a shorter reaction time and a greater carbon addition.

  • PDF