• Title/Summary/Keyword: Added mass and damping

Search Result 117, Processing Time 0.025 seconds

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

The Added Mass and Damping Coefficients of and the Excitation Forces on Four Axisymmetric Ocean Platforms

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 1983
  • This paper presents numerical results of the added mass and damping coefficients of vertical axisymmetric bodies on or under the free surface. Also computed are the excitation forces on these bodies due to an incident regular wave system. The numerical scheme employs a localized finite-element method, which is based on the theory of the calculus of variations. The excitation forces and moments on a submerged half-spheroid lying on the bottom are computed and compared with the results obtained by others. he agreement is good. Several specific types of floating vertical axisymmetric platforms are considered for ten different wave lengths, in connection with the design of an ocean-thermal-energy converter platform. The added mass and damping coefficient, as well as the excitations, are presented. It is shown that simple strip theory gives a good approximation of the sway(and pitch) added mass for a disc platform having a long circular cylinder.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Added Mass, Viscous Damping and Fluid-stiffness Coefficients on the Rotating Inner Cylinder in Concentric Annulus (동심환내의 회전체 진동에 의한 부가질량, 유체감쇠계수 및 유체탄성계수에 관한 연구)

  • 심우건;박진호;김기선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.695-701
    • /
    • 2001
  • While a rotating inner cylinder executes a periodic translational motion in concentric annulus, the vibration of the rotating inner cylinder is induced by fluid-dynamic forces acting on the cylinder. In the previous study related to journal bearing, the unsteady viscous flow in the annulus and the fluid-dynamic forces were evaluated based on a numerical approach. Considering the dynamic-characteristics of unsteady viscous flow, an approximate analytical method has been developed for estimating added mass, viscous damping and fluid-stiffness coefficients. For the study of flow-induced vibrations and related instabilities, it is of interest to separate the coefficients from the fluid-dynamic forces. The added-mass and viscous damping coefficients for very narrow annular configurations, as journal bearing. can be approximated by considering the gap ratio to the radius of inner cylinder, while the fluid-stiffness coefficient is related to the Reynolds number, the oscillatory Reynolds number and the gap ratio.

  • PDF

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

  • Bhatta Dambaru D.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.127-140
    • /
    • 2007
  • We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Damping strategies for steel lattice sandwich constructions

  • Mai, Son P.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1321-1331
    • /
    • 2015
  • A square steel sandwich plate with lattice corrugated core is explored for damping improvement. A range of damping materials are filled inside the openings provided by the corrugated core, or are applied on the surfaces of the facesheets. The dynamic properties such as natural frequency and damping factor are experimentally measured for the sandwich plate with each filling solution. The relative performance of each insertion is compared in terms of damping capacity and added mass.