• Title/Summary/Keyword: Added mass

Search Result 925, Processing Time 0.024 seconds

Earthquake Analaysis of Cylindrical Liquid Storage tanks Considering Effects of Soil-Structure Interaction (지반-구조물 상호작용을 고려한 원통형 유체저장탱크의 지진해석)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.83-90
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on horizontally layered half-space considering the effects of the interior fluid and exterior soil medium in the frequency domain. the horizontal and rocking motions of the structures are included in this study. The fluid motion is expressed in terms of analytical velocity potential function which can be obtained by solving the boundary value problem including the sloshing behavior of the fluid as well as deformed configuration of the structure. The effect of the fluid is included in the equation of motion as the impulsive added mass and a frequency-dependent convective added mass along the nodes on the wetted boundary with structure. The soil medium is presented using the 3-D axisymmetric finite elements and dynamic infinite elements. The present method can be applied to the structures embedded in ground as well as on ground since it models the soil medium directly as well as the structure. For the purpose of vertification dynamci characteristics of a tank on homogeneous half-space is analyzed. Comparison of the present results with those by others shows good agreement.

  • PDF

SAMI Galaxy Survey Data Release 2: Absorption-line Physics

  • Oh, Sree;Scott, Nicholas;van de Sande, Jesse
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2018
  • We present the second data release from the SAMI Galaxy Survey. The data release contains reduced spectral cubes for 1559 galaxies, about 50% of the full survey, having a redshift range 0.004 < z < 0.113 and a large stellar mass range 7.5 < log($M_*/M_{\odot}$) < 11.6. This release also includes stellar kinematic and stellar population value-added products derived from absorption line measurements, and all emission line value-added products from Data Release One. The data are provided online through Australian Astronomical Optics' Data Central. Our poster presents stellar/gas kinematics on the metallicity-mass plane and highlight several galaxies from the SAMI Galaxy Survey that have interesting stellar and gas kinematics. For more information about data release 2, please see: https://sami-survey.org/abdr.

  • PDF

Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing

  • Tuveri, Marco;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-257
    • /
    • 2014
  • The modern development in design of airships and aerostats has led to unconventional configurations quite different from the classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons.

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

A Study on Heat and Mass Transfer Characteristics of LiBr-$H_2$O Solution with a Sufactant Flowing over a Cooled Horizontal Tube (계면활성제 첨가시 수평 냉각관 외부를 흘러내리는 LiBr수용액의 열 및 물질전달 특성에 관한 연구)

  • 김경희;설신수;이상용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Heat and mass transfer characteristics of a surfactant-added LiBr-$H_2O$ solution flowing over a single horizontal tube were examined experimentally. The parameters considered were surfactant (2-ethyl-1-hexanol) concentration, solution temperature at the top of the tube and absorber pressure. Even with an amount of the surfactant below the solubility limit, heat and mass transfer performances were enhanced tremendously. The Nusselt and Sherwood numbers increased by about 70% and 340%, respectively, when 10 ppm of the surfactant was added. However, an excess amount of the surfactant in the solution did not bring a further enhancement. The absorption performance deteriorated when the non-condensable gases were extracted from the system (by a vacuum pump) since the vaporized surfactant was also extracted during the process. Therefore, it is desirable to add a sufficient amount of the surfactant (more than 10 ppm) to maintain high performance of absorption.

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity - Part I. Mechanical model

  • Chiba, Masakatsu;Chiba, Shinya;Takemura, Kousuke
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.303-327
    • /
    • 2013
  • The coupled free vibration of flexible structures and on-board liquid in zero gravity space was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two elastic beams, and the on-board liquid as a "spring-mass" system. Using the Lagrangians of a rigid mass (spacecraft main body), "spring-mass" (liquid), and two beams (flexible appendages), as well as assuming symmetric motion of the system, we obtained the frequency equations of the coupled system by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region closest to the two frequency curves but in the two regions separate from that region.

A Numerical Study of Liquid Injection into the Compressor Cylinder of a Heat Pump (열펌프 압축기의 내부 액분사 효과에 대한 수치해석적 연구)

  • 허재경;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.397-405
    • /
    • 2003
  • Heat and fluid flow in a compressor into which liquid refrigerant is injected for the purpose of reducing discharge gas temperature in a heat pump system has been numerically studied. A mechanistic approach encompassing liquid jet breakup and droplet evaporation has been performed to investigate the effects of liquid injection on the spacial and temporal variation of the gas temperature and pressure inside the compressor cylinder. Various parameters, such as liquid injection mass, time, duration and droplet size, are considered in the present study to elucidate the flow field inside the compressor. As the injection mass is increased, discharge gas temperature is decreased, while the pressure is increased due to the added mass of the injection. For the injected liquid mass corresponding to 15% of the total vapor mass in the cylinder, the discharge gas temperature drops by 22.4 K. It is observed that the droplet size plays a major role in the evaporation rate of the droplets that determines the degree of the discharge temperature drop.

A semi-active smart tuned mass damper for drive shaft

  • Cai, Q.C.;Park, J.H.;Lee, C.H.;Park, J.L.;Yoon, D.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF