• Title/Summary/Keyword: Added Mass Coefficient

Search Result 90, Processing Time 0.022 seconds

The Added Mass and Damping Coefficients of and the Excitation Forces on Four Axisymmetric Ocean Platforms

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 1983
  • This paper presents numerical results of the added mass and damping coefficients of vertical axisymmetric bodies on or under the free surface. Also computed are the excitation forces on these bodies due to an incident regular wave system. The numerical scheme employs a localized finite-element method, which is based on the theory of the calculus of variations. The excitation forces and moments on a submerged half-spheroid lying on the bottom are computed and compared with the results obtained by others. he agreement is good. Several specific types of floating vertical axisymmetric platforms are considered for ten different wave lengths, in connection with the design of an ocean-thermal-energy converter platform. The added mass and damping coefficient, as well as the excitations, are presented. It is shown that simple strip theory gives a good approximation of the sway(and pitch) added mass for a disc platform having a long circular cylinder.

  • PDF

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Analysis on Motion Responses and Transmission Coefficients of a Moored Floating Breakwater in Oblique Incident Waves (경사 입사파중 계류된 부유식 방파제의 운동응답과 투과율 해석)

  • Cho, Il-Hyoung;Pyo, Sang-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.6-13
    • /
    • 2009
  • Based on the boundary element method, the motion responses and transmission coefficients of a moored floating breakwater were investigated in oblique waves. To satisfy the outgoing radiation condition in the far field, the fluid domain was divided into inner and outer regions. The complete solution could be obtained by applying the matching conditions between the eigenfunction-based outer solution and BEM-based inner solution. Using the developed predictive tools, the wave exciting forces, added mass, damping coefficients, motion responses, and transmission coefficients were assessed for various combinations of breakwater configuration, wave heading, mooring cables properties, and wave characteristics. It was found that the transmission coefficient for a moored floating breakwater was closely dependent on the motion responses, which were greatly amplified at the resonant frequencies.

The Added Mass by Schwarz-Christoffel Transformation (Schwarz-Christoffel 변환(變換)에 의한 부가질량(附加質量)의 계산(計算))

  • J.H.,Hwang;C.H.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 1981
  • The hydrodynamic added mass of two dimensional cylinders oscillating vertically at high frequencies in the free surface is of interest to ship vibration problems. Conformal transformation is one of the methods commonly in use for computing the inertia coefficient. Especially, Schwarz-Christoffel transformation has been employed to evaluate the inertia coefficient for the cylinders of straight frames and chines. In this paper, the inertia coefficient for the cylinders with round corners in vertical oscillation at high frequencies are evaluated by employing the Schwarz-Christoffel transformation for the concave corner. The results of calculation by employing the Schwarz-Christoffel transformation are found to be well within the expected range of values compared to Lewis form and the results obtained by source distribution method.

  • PDF

Added Mass, Viscous Damping and Fluid-stiffness Coefficients on the Rotating Inner Cylinder in Concentric Annulus (동심환내의 회전체 진동에 의한 부가질량, 유체감쇠계수 및 유체탄성계수에 관한 연구)

  • 심우건;박진호;김기선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.695-701
    • /
    • 2001
  • While a rotating inner cylinder executes a periodic translational motion in concentric annulus, the vibration of the rotating inner cylinder is induced by fluid-dynamic forces acting on the cylinder. In the previous study related to journal bearing, the unsteady viscous flow in the annulus and the fluid-dynamic forces were evaluated based on a numerical approach. Considering the dynamic-characteristics of unsteady viscous flow, an approximate analytical method has been developed for estimating added mass, viscous damping and fluid-stiffness coefficients. For the study of flow-induced vibrations and related instabilities, it is of interest to separate the coefficients from the fluid-dynamic forces. The added-mass and viscous damping coefficients for very narrow annular configurations, as journal bearing. can be approximated by considering the gap ratio to the radius of inner cylinder, while the fluid-stiffness coefficient is related to the Reynolds number, the oscillatory Reynolds number and the gap ratio.

  • PDF

Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins (고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석)

  • Chan, Wai Leung;Lee, Gi-Gun;Kim, Byung-Ha;Choi, Jung-Min;Kang, Tae-Sam
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 2010
  • The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.

Hydrodynamic Forces on a Two-dimensional Cylinder in Shallow Water (천수역에 놓인 2차원 주상체에 수평방향으로 작용하는 동유체력에 관한 고찰)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 1986
  • An analysis is made of hydrodynamic forces acting horizontally on a two-dimensional cylinder, when it is exposed to incident waves and consequently undergoes a swaying motion in shallow water. Applying the method of matched asymptotic expansions the added mass, wave damping and the wave exciting force are obtained in terms of the difference in potential across the cylinder in a simple manner. The potential jump is related to the so-called blockage coefficient which is determined purely from geometry. It is found that the wave damping coefficient can not exceed the blockage coefficient.

  • PDF

Water Wave Interactions with Array of Floating Circular Cylinders (부유식 원형 실린더 배열에 의한 파 상호작용)

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.51-62
    • /
    • 2013
  • The water wave interactions on any three-dimensional structure of arbitrary geometry can be calculated numerically through the use of source distribution or Green's function techniques. However, such a method can be computationally expensive. In the present study, the water wave interactions in floating circular cylinder arrays were investigated numerically using the eigenfunction expansion method with the three- dimensional potential theory to reduce the computational expense. The wave excitation force, added mass coefficient, radiation damping coefficient, and wave run-up are presented with the water wave interactions in an array of 5 or 9 cylinders. The effects of the number of cylinders and the spacing between them are examined because the water wave interactions in floating circular cylinder arrays are significantly dependent upon these.

Two Dimensional Added Inertia Coefficients for Straight Framed Hull Forms in Horizontal and Torsional Vibration. (직선늑골선형(直線肋骨船型)의 수평(水平) 및 비틂진동(振動)에 있어서의 2차원적(次元的) 부가관성계수(附加慣性係數))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.3-12
    • /
    • 1975
  • As for two dimensional added mass coefficients for straight framed hull forms in a free surface of an ideal fluid, theoretical calculations by F.M. Lewis, vertical, K. Wendel, J.H. Hwang, and etc. are available; vertical modes of rectangular and triangle sections by Lewis, vertical, horizontal and torsional models of rectangular and triangle section by Wendel, and systematical calculations for vertical modes of single chine forms by Hwang. In this paper, employing the conformal transformation by which a unit circle and its exterior region can conformally mapped to a polygon and its exterior region, the author calculated two dimensional added inertia coefficients systematically for straight framed sections with single chine in horizontal and torsional modes of vibrations. As the results, it was found that sloping side angle is an important factor measuring the magnitude of two dimensional added inertia coefficient for a set of given values of the sectional area coefficient and the beam-draft ratio. To grasp it cleary in physical sense, pressure distributions are investigated for some typical section contours. The numerical results are presented graphically in the form of two dimensional added sectional area coefficients with beam-draft ratios and sloping side angles as parameters, so that the data may conveniently utilized for estimation of the added inertia coefficients based on a three parameter technique.

  • PDF

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.