• Title/Summary/Keyword: Adaptive-neuro control

Search Result 129, Processing Time 0.03 seconds

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF

Maximum Torque Control of SynRM using AFNIS(Adaptive Fuzzy Neuro Inference) (AFNIS를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.219-220
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using adaptive fuzzy neuro inference system(AFNIS) and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled AFNIS and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the AFNIS and ANN controller.

  • PDF

Stable Adaptive On-line Neural Control for Wind Energy Conversion System (풍력 발전 계통의 적응 신경망 제어기 설계)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.838-842
    • /
    • 2011
  • This paper proposes an online adaptive neuro-controller for a wind energy conversion system (WECS) that is a highly nonlinear system intrinsically. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing neural network in the controller design in this paper. The proposed adaptive neural control scheme using radial-basis function network (RBFN) needs no system parameters to meet control objectives. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

Maximum Power Point Tracking Algorithm Development of Photovoltaic System by Fuzzy-Neuro Control (퍼지-뉴로 제어에 의한 PV 시스템의 MPPT 알고리즘 개발)

  • Jung, Chul-Ho;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1140-1141
    • /
    • 2008
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point is accurately tracked. The paper proposes a Fuzzy-Neuro control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. Fuzzy-Neuro has the advantages which are depicted both high performance and robustness in Fuzzy control and high adaptive control in Neural Network. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

  • PDF

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Vibration Control of a Composite Plate with Attached FBG Sensor (FBG 센서를 부착한 복합재 평판의 진동 제어)

  • Kim, Do-Hyung;Chang, Young-Hwan;Han, Jae-Hung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.14-17
    • /
    • 2003
  • Vibration control of a composite plate with a surface-bonded fiber Bragg grating (FBG) sensor and piezoceramic actuators has been performed using a neural network based adaptive predictive control algorithm. For the detection of Bragg wavelength changes, two cavity lengths in Fabry-Perot read-out interferometers are used in order to produce two quadrature phase shifted signals. The FBG sensor system and real-time neuro-adaptive control algorithm could be applicable to diverse dynamic systems.

  • PDF

Adaptive Neuro-Fuzzy Inference Systems for Indoor Propagation Prediction

  • Phaiboon, S.;Phokharatkul, P.;Somkurnpanich, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1865-1869
    • /
    • 2004
  • A new model for the propagation prediction for mobile communication network inside building is presented in this paper. The model is based on the determination of the dominant paths between the transmitter and the receiver. The field strength is predicted with adaptive neuro - fuzzy inference systems (ANFIS), trained with measurements. The advantage of the ANFIS with hybrid least squares and gradient descent algorithms is fast convergence compared with original neural network. The K-means algorithm for selection of training patterns is also used. Comparison of our predicted results to measurements indicate that improvements in accuracy over conventional empirical model are achieved.

  • PDF