• Title/Summary/Keyword: Adaptive-neuro control

Search Result 129, Processing Time 0.035 seconds

Fuzzy-Neural Control for Speed Control and estimation of SPMSM drive (SPMSM 드라이브의 속도제어 및 추정을 위한 퍼지-뉴로 제어)

  • Nam Su-Myeong;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Park Bung-Sang;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1251-1253
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neuro-fuzzy control(NFC) and estimation of speed using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

An adaptive neuro-fuzzy approach using IoT data in predicting springback in ultra-thin stainless steel sheets with consideration of grain size

  • Jing Zhao;Lichun Wan;Mostafa Habibi;Ameni Brahmia
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.109-124
    • /
    • 2024
  • In the era of smart manufacturing, precise prediction of springback-a common issue in ultra-thin sheet metal forming- and forming limits are critical for ensuring high-quality production and minimizing waste. This paper presents a novel approach that leverages the Internet of Things (IoT) and Artificial Neural Networks (ANN) to enhance springback and forming limits prediction accuracy. By integrating IoT-enabled sensors and devices, real-time data on material properties, forming conditions, and environmental factors are collected and transmitted to a central processing unit. This data serves as the input for an ANN model, which is trained with crystal plasticity simulations and experimental data to predict springback with high precision. Our proposed system not only provides continuous monitoring and adaptive learning capabilities but also facilitates real-time decision-making in manufacturing processes. Experimental results demonstrate significant improvements in prediction accuracy compared to traditional methods, highlighting the potential of IoT and ANN integration in advancing smart manufacturing. This approach promises to revolutionize quality control and operational efficiency in the industry, paving the way for more intelligent and responsive manufacturing systems.

Quality of service management for intelligent systems

  • Lee, Sang-Hyun;Jung, Byeong-Soo;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.3 no.2
    • /
    • pp.18-21
    • /
    • 2014
  • A control application requirements currently used is very low, such as packet loss rate, minimum delay on sensor networks with quality of service (QoS) requirements some packet delivery guarantee. This paper is the sampling period at the end of the actuator and sensor data transfer related to the Miss ratio for each source sensor node, use the controller and the internal ANFIS. The proposed scheme has the advantages of simplicity, scalability, and General. Simulation results of the proposed scheme can provide QoS support in WSANs.

Frequency Analysis of Adaptive Behavior of NEAT based Control for Snake Modular Robot (뱀형 모듈라 로봇을 위한 NEAT 기반 제어의 적응성에 대한 주파수 분석)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1356-1362
    • /
    • 2015
  • Modular snake-like robots are robust for failure and have flexible locomotions for obstacle environment than of walking robot. This requires an adaptation capability which is obtained from a learning approach, but has not been analysed as well. In order to investigate the property of adaptation of locomotion for different terrains, NEAT controllers are trained for a flat terrain and tested for obstacle terrains. The input and output characteristics of the adaptation for the neural network controller are analyzed for different terrains in frequency domain.

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression (개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.182-183
    • /
    • 2007
  • 본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.

  • PDF

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.