• Title/Summary/Keyword: Adaptive power allocation

Search Result 81, Processing Time 0.029 seconds

A Bit Allocation Algorithm Using Adaptive Bandwidth for DMT (적응적인 대역폭을 이용한 DMT에서의 비트 할당 알고리듬)

  • 최현우;신봉식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.372-375
    • /
    • 1999
  • This paper proposes a bit allocation algorithm using adaptive bandwidth for ADSL that uses the DMT technology. In certain cases for high attenuation loops the conventional algorithms are unable to assign data bits to the higher frequency tones, due to the power spectrum mask limitation recommended by ANSI Standard, even if the total power budget is not expended. In the proposed bit allocation algorithm, adjacent empty tones that would not be used merge into single tone, then additional bits is assigned to the merged empty tones. Because additional bits is allocated, most of the available power is used. The proposed algorithm show that total bit increase in about 2~9% bits more than about conventional "water-filling" and "bit removal" algorithms and that is able to use about 93% of the available budget Power

  • PDF

Downlink Power Allocation of the OFDMA Femtocell for Inter-cell Interference Mitigation (OFDMA 초소형 기지국의 인접셀 간섭을 최소화하기 위한 하향링크 전력 할당 기법)

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.743-751
    • /
    • 2010
  • OFDMA femtocell becomes an effective solution to support indoor high data rate services instead of the macrocell systems. Although the advantage of the femtocell, the co-channel interference between the femocell and the macrocell is the most significant problem that reduces the system performance. Macrocell users who have no permission to access the femtocell suffer from interference of the downlink transmission of femtocell. Therefore, the femtocell should use transmission power as small as possible to reduce interference to macrocell users. In this paper, we define the margin adaptive power allocation problem for the femtocell and propose a heuristic power allocation algorithm to solve the problem. Simulation results show the performance of the proposed algorithm.

Power Allocation and Subcarrier Assignment for Joint Delivery of Unicast and Broadcast Transmissions in OFDM Systems

  • Lee, Deokhui;So, Jaewoo;Lee, Seong Ro
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.375-386
    • /
    • 2016
  • Most existing studies on broadcast services in orthogonal frequency division multiplexing (OFDM) systems have focused on how to allocate the transmission power to the subcarriers. However, because a broadcasting system must guarantee quality of service to all users, the performance of the broadcast service dominantly depends on the channel state of the user who has the lowest received signal-to-noise ratio among users. To reduce the effect of the worst user on the system performance, we propose a joint delivery scheme of unicast and broadcast transmissions in OFDM systems with broadcast and unicast best-effort users. In the proposed joint delivery scheme, the BS delivers the broadcast information using both the broadcast and unicast subcarriers at the same time in order to improve the performance of the broadcast service. The object of the proposed scheme is to minimize the outage probability of the broadcast service while maximizing the sum-rate of best-effort users. For the proposed joint delivery scheme, we develop an adaptive power and subcarrier allocation algorithm under the constraint of total transmission power. This paper shows that the optimal power allocation over each subcarrier in the proposed scheme has a multi-level water filling form. Because the power allocation and the subcarrier assignment problems should be jointly solved, we develop an iterative algorithm to find the optimal solution. Numerical results show that the proposed joint delivery scheme with adaptive power and subcarrier allocation outperforms the conventional scheme in terms of the outage probability of the broadcast service and the sum-rate of best-effort users.

Optimal Bit Allocation Adaptive Modulation Algorithm for MIMO System

  • Fan, Lingyan;He, Chen;Feng, Guorui
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • In this paper, an adaptive minimum transmit power modulation scheme under constant data rate and fixed bit error rate (BER) for the multiple-input multiple-output (MIMO) system is proposed. It adjusts the modulation order and allocates the transmit power to each spatial sub-channel when meeting the user's requirements at the cost of minimum transmission power. Compared to the other algorithm, it can obtain good performance with lower computational complexity and can be applied to the wireless communication system. Computer simulation results present the efficiency of the proposed scheme. And its performance under different channel condition has been compared with the other algorithm.

Resource Allocation with Proportional Rate In Cognitive Wireless Network: An Immune Clonal Optimization Scheme

  • Chai, Zheng-Yi;Zhang, De-Xian;Zhu, Si-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1286-1302
    • /
    • 2012
  • In this paper, the resource allocation problem with proportional fairness rate in cognitive OFDM-based wireless network is studied. It aims to maximize the total system throughput subject to constraints that include total transmit power for secondary users, maximum tolerable interferences of primary users, bit error rate, and proportional fairness rate among secondary users. It is a nonlinear optimization problem, for which obtaining the optimal solution is known to be NP-hard. An efficient bio-inspired suboptimal algorithm called immune clonal optimization is proposed to solve the resource allocation problem in two steps. That is, subcarriers are firstly allocated to secondary users assuming equal power assignment and then the power allocation is performed with an improved immune clonal algorithm. Suitable immune operators such as matrix encoding and adaptive mutation are designed for resource allocation problem. Simulation results show that the proposed algorithm achieves near-optimal throughput and more satisfying proportional fairness rate among secondary users with lower computational complexity.

Improved Genetic Algorithm Based Bit and Subcarrier Allocation Scheme for Efficient Resource Use in Multiuser OFDM Systems (다중 사용자 OFDM 시스템에서 효율적인 자원 활용을 위한 향상된 유전자 알고리즘 기반의 비트-부반송파 할당방법)

  • Song, Jung-Sup;Kim, Sung-Soo;Chang, Kap-Seok;Kim, Dong-Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1095-1104
    • /
    • 2008
  • In multiuser OFDM systems, subcarrier and bit allocation plays an important role for the efficient resource use. However, in multiuser adaptive allocation as a non-linear problem, it is impractical to compute all to get the best solution because of the complexity. We set the goal of minimizing the transmit power while satisfying the BER and minimum bits required to transmit through the highest fitness combination of subcarriers and users. The proposed improved genetic algorithm employs the diversity of adaptive allocation more than existing genetic algorithm. Therefore, from the numerical simulation results, we find that the proposed heuristic algorithm has more performance than the existing algorithms.

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

A Novel Resource Allocation Algorithm in Multi-media Heterogeneous Cognitive OFDM System

  • Sun, Dawei;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.691-708
    • /
    • 2010
  • An important issue of supporting multi-users with diverse quality-of-service (QoS) requirements over wireless networks is how to optimize the systematic scheduling by intelligently utilizing the available network resource while, at the same time, to meet each communication service QoS requirement. In this work, we study the problem of a variety of communication services over multi-media heterogeneous cognitive OFDM system. We first divide the communication services into two parts. Multimedia applications such as broadband voice transmission and real-time video streaming are very delay-sensitive (DS) and need guaranteed throughput. On the other side, services like file transmission and email service are relatively delay tolerant (DT) so varying-rate transmission is acceptable. Then, we formulate the scheduling as a convex optimization problem, and propose low complexity distributed solutions by jointly considering channel assignment, bit allocation, and power allocation. Unlike prior works that do not care computational complexity. Furthermore, we propose the FAASA (Fairness Assured Adaptive Sub-carrier Allocation) algorithm for both DS and DT users, which is a dynamic sub-carrier allocation algorithm in order to maximize throughput while taking into account fairness. We provide extensive simulation results which demonstrate the effectiveness of our proposed schemes.

Performance Analysis of Space-Time Coded Spatial Multiplexing Systems with Rate Allocation and Power Control (전송률 할당 및 전력 제어를 갖는 시공간 블록 부호화한 공간 다중화 시스템의 성능 분석)

  • Na, Seung-Gun;Hwang, Hyeon-Chyeol;Kim, Seok-Ho;Choi, Sun-Ho;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.568-577
    • /
    • 2005
  • In this paper, we propose the transmission scheme for the space-time block coded spatial multiplexing systems that have adaptive rate and power allocation per each transmit antenna through the use of feedback information related to channel state. Simulation results show that the adaptive power and rate transmission scheme gain more than 4.5 dB over conventional equal-power and rate transmission scheme.

Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks

  • Zhang, Xiaoli;Jin, Yongnu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1733-1751
    • /
    • 2015
  • The IEEE 802.15.4 standard not only provides a maximum of seven guaranteed time slots (GTSs) for allocation within a superframe to support time-critical traffic, but also achieves ultralow complexity, cost, and power in low-rate and short-distance wireless personal area networks (WPANs). Real-time wireless body area sensor networks (WBASNs), as a special purpose WPAN, can perfectly use the IEEE 802. 15. 4 standard for its wireless connection. In this paper, we propose an adaptive GTS allocation scheme for real-time WBASN data transmissions with different priorities in consideration of low latency, fairness, and bandwidth utilization. The proposed GTS allocation scheme combines a weight-based priority assignment algorithm with an innovative starvation avoidance scheme. Simulation results show that the proposed method significantly outperforms the existing GTS implementation for the traditional IEEE 802.15.4 in terms of average delay, contention free period bandwidth utilization, and fairness.