• Title/Summary/Keyword: Adaptive notch filter (ANF)

Search Result 4, Processing Time 0.024 seconds

On-line Frequency Estimation Based on Cascade Adaptive Notch Filter and Application to Active Noise Control

  • Kim, Sunmin;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.81-84
    • /
    • 1998
  • For ANC systems applied to aircrafts or passenger ships, engines from which reference signals are usually measured are located so far from seats where main part of controllers are placed. It can make feedforward ANC scheme difficult to implement or very costly. Feedback ANC algorithms which do not require reference signals and use error signals alone to update the filter, are usually sensitive to measurement noise ' and impulse noise. In this paper, reference signal needed for the feedforward control is not measured directly but generated with the estimated frequencies. Cascade adaptive notch filter (ANF), which has the low computational burden, is used to implement ANC system in real time. Several ANFs of order 2 are connected in series to estimate multiple sinusoids. Computer simulations and experiments in the laboratory for verifying efficacy of the proposed algorithm are carried out.

  • PDF

Heart-rate Measurement During Exercise Using PPG Signal (PPG 신호를 이용한 운동 중 맥박수 측정)

  • Lee, Keun-Sang;Baek, Young-Hyun;Park, Young-Chool
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • A method of measuring heart rate using photoplethysmograph(PPG) signal during exercise is proposed. PPG's are composed of strong base tones and their harmonics, and the strong base tones are trackable by the adaptive notch filter (ANF) which adjusts its coefficients to minimize the output power. The proposed heart rate measurement algorithm continuously notches the frequency component with the maximum power in the measured PPG, so that the fundamental frequency corresponding to heart rate is traced. We also presents methods of detecting degeneration and impulsive noise blocks to minimize the coefficient fluctuation. Experiments were conducted using real PPG signals captured during exercise. Results showed that the proposed algorithm is capable of consistently tracking the heart rate embedded in the noisy PPG's.

Development of Adaptive Feedback Cancellation Algorithm for Multi-channel Digital Hearing Aids (다채널 디지털 보청기를 위한 적응 궤환 제거 알고리즘 개발)

  • 이상민;김상완;권세윤;박영철;김인영;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2004
  • In this study, we proposed an adaptive feedback cancellation algorithm for multi-band digital healing aids. The adaptive feedback canceller (AFC) is composed of an adaptive notch filter (ANF) for feedback detection and an NLMS (normalized least mean square) adaptive filter for feedback cancellation. The proposed feedback cancellation algorithm is combined with a multi-band hearing aid algorithm which employs the MDCT (modified discrete cosine transform) filter bank for the frequency-dependent compensation of hearing losses. The proposed algorithm together with the MDCT-based multi-channel hearing aid algorithm has been evaluated via computer simulations and it has also been implemented on a commercialized DSP board for real-time verifications.

Source signal separation by blind processing for a microphone array system (마이크로폰 어레이 시스템을 사용한 브라인드 처리에 의한 음원분리)

  • ;Usagawa Tsuyoshi;Masanao Ebata
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.609-612
    • /
    • 2000
  • 본 논문에서는 음원에 관한 정보가 미지의 상황에서 마이크로폰 어레이를 사용하여 두 음원신호를 분리하는 ,시스템을 제안한다 이 시스템은 두 단계로 구성되어 있으며, 첫 번째 단계에서는 파워가 큰 제 1음원의 DOA(Direction Of Arrival)를 추정하고, AMUSE(Algorithm for Multiple Unknown Signals Extraction)법을 사용한 Blind Deconvolution에 의해 음원신호의 분리를 행한다 두 번째 단계에서는 파워가 낮은 제 2음원의 강조신호를 사용하여 DSA(Delay and Sum Array)법에 의해 제 2음원의 DOA를 추정하고,AMUSE법의 출력신호와 두 음원의 DOA를 이용하여 ANF(Adaptive Notch Filter)를 구성하고, 두 음원신호의 재 분리를 행한다. 그리고, 시뮬레이션을 통해 제안한 방법의 유효성을 검토한 결과 두 음원 신호가 분리 가능한 것이 확인되었다.

  • PDF