• Title/Summary/Keyword: Adaptive noise canceling

Search Result 21, Processing Time 0.022 seconds

Adaptive Active Noise Control of Single Sensor Method (단일 센서 방식의 적응 능동 소음제어)

  • 김영달;장석구
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.941-948
    • /
    • 2000
  • Active noise control is an approach to reduce the noise by utilizing a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and an adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Oppenheim assumed that transfer function characteristics from the canceling source to the error sensor is only a propagation delay. This paper proposes a modified Oppenheim algorithm by considering transfer characteristics of speaker-path-sensor This transfer characteristics is adaptively cancelled by the proposed adaptive modeling technique. Feasibility of the proposed method is proved by computer simulations with artificially generated random noises and sine wave noise. The details of the proposed architecture. and theoretical simulation of the noise cancellation system for three dimension enclosure are presented in the Paper.

  • PDF

Single Channel Active Noise Control using Adaptive Model (적응모델을 이용한 단일채널 능동 소음제어)

  • Kim, Yeong-Dal;Lee, Min-Myeong;Jeong, Chang-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.442-450
    • /
    • 2000
  • Active noise control is an approach to noise reduction in which a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and a time-adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Opppenheim model assumed that transfer function characteristics from the canceling source to the error sensor is only propagation delay. But this paper proposes a modified Oppenheim model by considering transfer characteristics of acoustic device and noise path. This transfer characteristics is adaptively cancelled by adaptive model. This is proved by computer simulation with artifically generated random noise and sine wave noise. The details of the proposed architecture, and theoretical simulation and experimental results of the noise cancellation system for three dimension enclosure are presented in the paper.

  • PDF

Speech Enhancement Using the Adaptive Noise Canceling Technique with a Recursive Time Delay Estimator (재귀적 지연추정기를 갖는 적응잡음제거 기법을 이용한 음성개선)

  • 강해동;배근성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.33-41
    • /
    • 1994
  • A single channel adaptive noise canceling (ANC) technique with a recursive time delay estimator (RTDE) is presented for removing effects of additive noise on the speech signal. While the conventional method makes a reference signal for the adaptive filter using the pitch estimated on a frame basis from the input speech, the proposed method makes the reference signal using the delay estimated recursively on a sample-by-sample basis. As the RTDEs, the recursion formulae of autocorrelation function (ACF) and average magnitude difference function (AMDF) are derived. The normalized least mean square (NLMS) and recursive least square (RLS) algorithms are applied for adaptation of filter coefficients. Experimental results with noisy speech demonstrate that the proposed method improves the perceived speech quality as well as the signal-to-noise ratio and cepstral distance when compared with the conventional method.

  • PDF

An Active Broadband Noise Control System based on the MuItiband-Structured Delayless Subband Adaptive Filter (광대역 소음 제어를 위한 시간 지연 없는 Multiband-Structured Subband Adaptive Filter 기반 능동 소음 제어)

  • Kim, Shin-Wook;Jeon, Hyeon-Jin;Park, Min-Woo;Lee, Woo-Gun;Chang, Tae-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.669-673
    • /
    • 2010
  • This paper proposes a new active noise control (ANC) system for canceling broadband noise. The proposed ANC system is designed based on the multiband-structured delayless subband adaptive filter (MDSAF), which has advantages of fast-convergence speed and higher noise reduction performance by eliminating the aliasing and band-edge effects caused by band-partitioning. The simulation results show that the proposed ANC system has faster convergence speed as compared to the conventional ANC systems and effectively reduces the wideband noise.

Design of the fast adaptive digital filter for canceling the noise in the frequency domain (주파수 영역에서 잡음 제거를 위한 고속 적응 디지털 필터 설계)

  • 이재경;윤달환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the high speed noise reduction processing system using the modified discrete fourier transform(MDFT) on the frequency domain. The proposed filter uses the linear prediction coefficients of the adaptive line enhance(ALE) method based on the Sign algorithm The signals with a random noise tracking performance are examined through computer simulations. It is confirmed that the fast adaptive digital filter is realized by the high speed adaptive noise reduction(HANR) algorithm with rapid convergence on the frequency domain(FD).

Characteristics of Real-time Implementation using the Advanced System Controller in ANC Systems (개선된 시스템 제어기를 사용한 능동소음제어의 실시간 구현 특성)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • Active noise control (ANC) is a method of cancelling a noise signal in an acoustic cavity by generating an appropriate anti-noise signal via canceling loudspeakers. The continuous progress of ANC involves the development of improved adaptive signal processing algorithms, transducers, and DSP hardware. In this paper, the convergence behavior and the stability of the FxLMS algorithm in ANC systems with real-time implementation is proposed. Specially, The advanced DSP H/W with dual core(DSP+ARM) and API(application programming interface) S/W programming was developed to improve the real-time implementation performance under the FxLMS algorithms of input noise such as road noise environment. The experimental results are found to be in good agreement with the theoretical predictions.

Development and Implementation of Noise-Canceling Technology for Digital Stethoscope (디지털 청진기를 위한 잡음 제거 기술 개발 및 구현)

  • Lee, Keunsang;Ji, Youna;Jeon, Youngtaek;Park, Young Chool
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.204-211
    • /
    • 2013
  • In this paper, an algorithm for suppressing acoustic noises contained in stethoscope sound is proposed and implemented in real-time using an embedded DSP system. Sound collected by stethoscope is down-sampled and band-pass filtered, and later an NLMS adaptive filter is used to cancel the acoustic noise induced from external noise sources. Also, the unpredictable impulsive noises due to fabric friction and instantaneous tapping are detected using the SD-ROM algorithm, and suppressed using an algorithm approximating the morphology filter. The proposed algorithm was tested using signals collected with a digital stethoscope mockup, and implemented on an ARM920T-based DSP system.

A Single Channel Adaptive Noise Cancellation for Speech Signals (음성신호의 단일입력 적응잡음제거)

  • Gahng, Hae-Dong;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.16-24
    • /
    • 1994
  • A single channel adaptive noise canceling (ANC) technique is presented for removing effects of additive noise on the speech signal. The conventional method obtains a reference signal using the pitch estimated on a frame basis from the input speech. The proposed method, however, gets the reference signal using the delay estimated recursively on a sample by sample basis. To estimate the delay, we derive recursion formula of autocorrelation function and average magnitude difference function. The performance of the proposed method is evaluated for the speech signals distorted by the additive white Gaussian noise. Experimental results with normalized least mean square (NLMS) adaptive algorithm demonstrate that the proposed method improves the perceived speech quality quite well besides the signal-to-noise ratio.

  • PDF

Feedback Active Noise Control Based Voice Enhancing Ear-Protection System

  • Moon, Seong-Pil;Chang, Tae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1627-1633
    • /
    • 2017
  • This paper proposes a voice enhancing ear-protection system which is based on feedback active noise control(FBANC). The proposed system selectively suppresses the background noise and preserves the talking voice by controlling the adaptive algorithm with the voice activity period detection module. The noise reduction performance of the proposed noise canceling algorithm is analytically derived for the two key performance affecting parameters, i.e., electro-acoustic coupling distance and noise bandwidth. The proposed system is also implemented with a floating-point DSP system and its performance is experimentally tested to compare with the analytically derived results. The achieved levels of noise reduction for the three different noise bandwidths cases, i.e., 10Hz, 50Hz, and 90Hz, are high to show 17.05dB, 10.54dB and 8.99dB, respectively. The feasibility of the proposed system is also shown by the peak noise reduction achieved more than 25dB while preserving the voice component in the frequency range between 200-800Hz.

Characteristics of noise cancellation for MCG signals using wavelet packets (웨이브렛 패킷을 이용한 심자도 신호의 잡음 제거 특성)

  • 박희준;김용주;정주영;원철호;김인선;조진호
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • Noise from electronic instrumentation is invariably present in biomedical signals, although the art of instrumentation design is such that this noise source may be negligible. And sometimes signals of interest are contaminated or degraded by signals of similar type from another source. Biomedical signals are omni-presently contaminated by these background noises that span nearly all frequency bandwidths. In the magneto-cardiogram (MCG), several digital filters have been designed for the elimination of the power-line interference, broadband white noise, surrounding magnetic noise, and baseline wondering. In addition to the introduced FIR filter, notch, adaptive filter using the least mean square (LMS) algorithm, and recurrent neural network (RNN) filter, a new filtering method for effective noise canceling in MCG signals is proposed in this paper, which is realized by the wavelet packets. The experimental results show that the proposed filter using wavelet packet performs efficiently with respect to noise rejection. To verify this, two characteristics were analyzed and compared with LMS adaptive filter, SNR of filtered signal and attractor pattern using the nonlinear dynamics.

  • PDF