Journal of information and communication convergence engineering
/
제7권4호
/
pp.535-538
/
2009
Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise to preserve edges. As the result, MAM of the proposed method enhances the image to about 10% in comparison with Winner filter by Edge Preservation Index and PSNR, and 10% to only adaptive median filtering.
Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise. As the result the proposed method enhances the image to about 20% in comparison with Winer filter by Edge Preservation Index and PSNR.
Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.
When digital image signals are transmitted or stored, they may be usually degraded by impulsive noise such as BSC noise. Though median filtering is a very effective method to reduce the impulsive noise, it brings non-negligible distortion after filtering. Several algorithms have been proposed to reduce such a distortion, but their reconstructed image quality are inadequate in some cases and they have a difficulty in real-time processing. In this paper, an effective filtering algorithm which can not only reduce the noise effectively but also preserve the edges well and lessen the distortion greatly, is presented. The proposed algorithm is an adaptive algorithm of median filter using local statistics, based on the characteristics of human eyes. The adaptive algorithm results shwo performance improvement of up to 3-4 dB over the nonadaptive one.
영상은 잡음센서이나 채널 전송에러에 의해 생기는 임펄스 잡음에 의해 자주 오염된다. 본 논문은 영상에서 이런 임펄스 잡음을 제거하는 방법에 대해 논의하고자 한다. 제안된 잡음제거는 SVM(Support Vector Machine)과 개선된 Adaptive Median 필터에 의해 이루어진다. SVM에 의해 영상에서 잡음픽셀여부를 검출하고 검출된 잡음픽셀은 개선된 Adaptive Median 필터에 의해 새로운 픽셀값으로 대체한다. 제안된 방법의 성능을 평가하기 위해 영상 실험을 통하여 salt-and-pepper 임펄스 잡음과 random-valued 임펄스 잡음을 고려하여 기존의 잡음제거 방법들과 정성적이고 MAE, PSNR를 통한 정량적인 비교를 하였다. 실험결과 제안된 방법은 잡음 제거와 미세한 부분에 대한 보존력이 뛰어나고 특히, 많이 오염된 영상에 대해서도 상당한 잡음제거 성능을 보였다.
본 논문에서는, 동영상 처리에 효과적으로 사용되고 있는 시공간 중간 가중 미디안(spatiotemporal center weighted median, CWM) 필터의 통계적 특성을 고찰한 결과, 중간 가중 미디안 필터는 잡음 감쇄 효과를 회생시킴으로써 동영상의 구조들을 보존할 수 있다는 것을 보였다. 또한 동영상에서, 보다 효과적으로 이용될 수 있는 적응 방향성 중간 가중 미디안(adaptive directional center weighted median, ADCWM) 필터를 제안하였다. 제안된 이 필터는 매 윈도우내에서 중심의 양쪽에 대칭인 한쌍의 oreder statistics를 국소 영상의 통계치에 의해 선택하는 적응 대칭성 order statistics(ASOS) 연산자에 기반을 두고 있으며 또한 다단 필터링 구조를 채택하고 있다. 적응 방향성 중간 가중 미디안 필터는 움직임 추정(motion estimation) 기술을 이용하지 않고 잡음을 줄이며 또한 동영상의 구조를 보존할 수 있다는 것을 실험을 통하여 입증하였다.
Journal of Advanced Marine Engineering and Technology
/
제28권4호
/
pp.611-617
/
2004
Pixel classification is one of basic image processing issues. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time. a pixel classification scheme based on image direction measure is proposed. As a typical application instance of pixel classification, an adaptive multi-level median filter is presented. An image can be classified into two types of areas by using the direction information measure, that is. smooth area and edge area. Single direction multi-level median filter is used in smooth area. and multi-direction multi-level median filter is taken in the other type of area. What's more. an adaptive mechanism is proposed to adjust the type of the filters and the size of filter window. As a result. we get a better trade-off between preserving details and noise filtering.
In this paper, an adaptive motion vector smoothing scheme based on weighted vector median filtering is proposed in order to eliminate the motion outliers more effectively for improving the quality of side information in frame-based distributed video coding. We use a simple motion vector outlier reliability measure for each block in a motion compensated interpolated frame and apply weighted vector median filtering only to the blocks with unreliable motion vectors. Simulation results show that the proposed adaptive motion vector smoothing algorithm improves the quality of the side information significantly while maintaining low complexity at the encoder in frame-based distributed video coding.
편미분 방정식을 도입하여 새로운 영상처리 기술을 개발하려는 연구가 활발히 진행 중이며, 특히 확산 방정식을 풀어 잡음 제거, 영상 복원, 에지 검출 및 영상 분할 등에 응용할 수 있는 이미지 확산 알고리즘에 관심이 높다. 본 논문에서는 기존의 비등방성 확산 방식이 결국은 커널 크기가 작은 적응 필터링 방식과 동일한 효과를 낸다는 것을 보이고, 확산 과정에서 선형 필터의 단점을 보완할 수 있도록 가중 미디언(WM, Weighted Median) 필터를 적용한 새로운 확산 기법을 제안하였다. 제안된 WM 필터가 비등방성 커널을 갖도록 필터계수에 대응하는 가중치들을 이미지의 국부적인 변화량에 따라 적응적으로 가변할 수 있는 기법을 제안하였다. 뿐만 아니라 반복 과정에서의 확산 속도를 증가할 수 있도록 커널의 크기를 증가시키기 위한 방안도 제시하였다. 실제 영상을 사용한 실험을 통하여 제안된 방식이 기존의 방식에 비해 잡음 제거 (특히 임펄스성 잡음) 특성이나 에지 보존 특성이 더 우수하다는 것을 보였다. 또한 기존의 방식에 비해 확장된 크기를 갖는 커널을 이용함으로써 확산 속도를 높일 수 있다는 것을 보였다.
Communications for Statistical Applications and Methods
/
제18권6호
/
pp.871-886
/
2011
This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.