• Title/Summary/Keyword: Adaptive median filtering

Search Result 34, Processing Time 0.027 seconds

Edge Preserving Speckle Reduction of Ultrasound Image with Morphological Adaptive Median Filtering

  • Ryu, Kwang-Ryol;Jung, Eun-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.535-538
    • /
    • 2009
  • Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise to preserve edges. As the result, MAM of the proposed method enhances the image to about 10% in comparison with Winner filter by Edge Preservation Index and PSNR, and 10% to only adaptive median filtering.

Speckle Noise Reduction with Morphological Adaptive Median Filtering Based on Edge Preservation

  • Jung, Eun Suk;Ryu, Conan K.R.;Hur, Chang Wu;Sun, Mingui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.329-332
    • /
    • 2009
  • Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise. As the result the proposed method enhances the image to about 20% in comparison with Winer filter by Edge Preservation Index and PSNR.

  • PDF

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

Adaptive Image Restoration of Median Filter Using Local Statistics (국부 통계를 이용한 메디안 필터의 적응 영상 복원)

  • 김남철;윤장홍;황찬식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.863-867
    • /
    • 1987
  • When digital image signals are transmitted or stored, they may be usually degraded by impulsive noise such as BSC noise. Though median filtering is a very effective method to reduce the impulsive noise, it brings non-negligible distortion after filtering. Several algorithms have been proposed to reduce such a distortion, but their reconstructed image quality are inadequate in some cases and they have a difficulty in real-time processing. In this paper, an effective filtering algorithm which can not only reduce the noise effectively but also preserve the edges well and lessen the distortion greatly, is presented. The proposed algorithm is an adaptive algorithm of median filter using local statistics, based on the characteristics of human eyes. The adaptive algorithm results shwo performance improvement of up to 3-4 dB over the nonadaptive one.

  • PDF

Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images (영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거)

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Uk;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.151-165
    • /
    • 2010
  • Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.

Adaptive Directional Filtering Techniques for Image Sequences (동영상을 위한 적응 방향성 필터링 기술)

  • 고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.922-934
    • /
    • 1993
  • In this paper, statistical properties of the spatiotemporal center weighted median(CWM) filter for image sequences are investigated. It is statistically shown that the CWM filter preserves image structures under motion at the expense of noise suppression. To improve the CWM filter, a filter which can be effectively used in image sequence processing, the adaptive directional center weighted median filter (ADCWM), is proposed. This filter utilizes a multistage filtering structure based on adaptive symmetric order statistic(ASOS) operators which produce a pall of order statistics symmetric about the median. The ASOS's are selected by using adaptive parameters adjusted by local image statistics. It is shown experimentally that the proposed filter can preserve image structures while attenuating noise without the use of motion estimation.

  • PDF

A study on Adaptive Multi-level Median Filter using Direction Information Scales (방향성 정보 척도를 이용한 적응적 다단 메디안 필터에 관한 연구)

  • 김수겸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.611-617
    • /
    • 2004
  • Pixel classification is one of basic image processing issues. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time. a pixel classification scheme based on image direction measure is proposed. As a typical application instance of pixel classification, an adaptive multi-level median filter is presented. An image can be classified into two types of areas by using the direction information measure, that is. smooth area and edge area. Single direction multi-level median filter is used in smooth area. and multi-direction multi-level median filter is taken in the other type of area. What's more. an adaptive mechanism is proposed to adjust the type of the filters and the size of filter window. As a result. we get a better trade-off between preserving details and noise filtering.

Adaptive Motion Vector Smoothing for Improving Side Information in Distributed Video Coding

  • Guo, Jun;Kim, Joo-Hee
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • In this paper, an adaptive motion vector smoothing scheme based on weighted vector median filtering is proposed in order to eliminate the motion outliers more effectively for improving the quality of side information in frame-based distributed video coding. We use a simple motion vector outlier reliability measure for each block in a motion compensated interpolated frame and apply weighted vector median filtering only to the blocks with unreliable motion vectors. Simulation results show that the proposed adaptive motion vector smoothing algorithm improves the quality of the side information significantly while maintaining low complexity at the encoder in frame-based distributed video coding.

Nonlinear Anisotropic Diffusion Using Adaptive Weighted Median Filters (적응 가중 미디언 필터를 이용한 영상 확산 알고리즘)

  • Hwang, In-Ho;Lee, Kyung-Hoon;Kim, Woong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.542-549
    • /
    • 2007
  • Recently, many research activities in the image processing area are concentrated on developing new algorithms by finding the solution of the 'diffusion equation'. The diffusion algorithms are expected to be utilized in numerous applications including noise removal and image restoration, edge detection, segmentation, etc. In this paper, at first, it will be shown that the anisotropic diffusion algorithms have the similar structure with the adaptive FIR filters with cross-shaped 5-tap kernel, and this relatively small-sized kernel causes many iterating procedure for satisfactory filtering effects. Moreover, it will also be shown that lots of modifications which are adopted to the conventional Gaussian diffusion method in order to weaken the edge blurring nature of the linear filtering process increases another computational burden. We propose a new Median diffusion scheme by replacing the adaptive linear filters in the diffusion process with the AWM (Adaptive Weighted Median) filters. A diffusion-equation-based adaptation scheme is also proposed. With the proposed scheme, the size of the diffusion kernel can be increased, and thus diffusion speed greatly increases. Simulation results shows that the proposed Median diffusion scheme outperforms in noise removal (especially impulsive noise), and edge preservation.

Adaptive Switching Median Filter for Impulse Noise Removal Based on Support Vector Machines

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Ok;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.871-886
    • /
    • 2011
  • This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.