• Title/Summary/Keyword: Adaptive equalizers

Search Result 48, Processing Time 0.019 seconds

Design of a Blind DFE Equalizer for high-speed data communication (고속 데이터 통신을 위한 Blind DFE Equalizer의 설계)

  • 박원흠;선우명훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.704-711
    • /
    • 2002
  • This paper proposes a DFE (Decision Feedback Equalizer) equalizer ASIC using the Multi-Modulus Algorithm (MMA) for cable modem applications. We believe that it is the first effort to combine the DFE structure and the MMA algorithm. The proposed equalizer has been designed for 64/256 QAM modems. The existing MMA equalizer uses two transversal filters and updates two tap weights while the proposed equalizer uses two DFE filter banks to improve the channel adaptive performance and to reduce the number of taps and updates only one tap weights. We have used the 0.35 $\mu\textrm{m}$ standard cell library. The implemented equalizer ASIC operates at 8 MHz and provides 64 Mbps which is higher than existing equalizers. The total number of gates are about 160,000.

An Adaptive Blind Equalizer Based on Dynamic Error Signal Generation Using Equalized Output State (등화기 출력 상태에 따른 동적 오차 신호 발생 기반의 적응 블라인드 등화기)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.52-58
    • /
    • 2013
  • This paper proposes an adaptive algorithm based on a method of dynamic error signal generation suitable for signal state by examining the equalizer output signal in blind equalization. In the proposed method, it estimates the error signals using single modulus and multiple modulus each effective to the early stage of equalization or steady-state, and it generates a new error signal from the two error estimates. Two equalizer structures are implemented and their performances are compared: 1-equalizer structure that generates a new error signal by combining the two error estimates weightedly and updates the equalizer using this, and 2-equalizer structure that updates two equalizers respectively depending on the weights of the two error signals. In the proposed method, as the error signals were generated optimally before and after the initial convergence respectively, it was confirmed by computer simulations that the equalizer was updated effectively.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

A Study on Channel Equalization in Time Varying Channels for Mobile Communication System (이동통신 시스템의 Time Varying 채널 환경에서 채널 등화에 관한 연구)

  • Park No-Jin;Kim Dong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The third generation mobile communications system requiring the reliable multimedia data transmission has provided with the reliable voice, data and video services over the variable propagation environment. However the broadband wireless multiple access technologies cause Inter Symbol Interference(ISI) or Multiple Access Interference(MAI) to degrade the performance of CDMA(Code Division Multiple Access) system. Constant Modulus Algorithm which is frequently used as the adaptive blind equalizers to remove the interfering signal has ill-convergence phenomenon without proper initialization. In this paper, new blind equalization method based on conventional CMA is proposed to improve the channel efficiency, and through computer simulation this is tested over the time varying fading environment of mobile communication system. consequently, new blind equalization method into concatenated Kalman filter with CMA is verified better than conventional CMA through adopting minimum mean square errors and eye-pattern obtained from algorithm are compared.

A Modified Decision-Directed LMS Algorithm (수정된 DD LMS 알고리즘)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.3-8
    • /
    • 2016
  • We propose a modified form of the decision-directed least mean square (DD LMS) algorithm that is widely used in the optimization of self-adaptive equalizers, and show the modified version greatly improves the initial convergence properties of the conventional algorithm. Existing DD LMS regards the difference between a equalizer output and a quantization value for it as an error, and achieves an optimization of the equalizer based on minimizing the mean squared error cost function for the equalizer coefficients. This error generating method is useful for binary signal or a single-level signals, however, in the case of multi-level signals, it is not effective in the initialization of the equalizer. The modified DD LMS solves this problem by modifying the error generation. We verified the usefulness and performance of the modified DD LMS through experiments with multi-level signals under distortions due to intersymbol interference and additive noise.

A New Criterion of Information Theoretic Optimization and Application to Blind Channel Equalization (새로운 정보이론적 최적기준에 의한 블라인드 등화)

  • Kim, Nam-Yong;Yang, Liuqing
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • Blind equalization techniques have been used in multipoint communication on which the research on the internet has focused. In this paper, a criterion of minimizing Euclidian Distance between two PDFs for adaptive blind equalizers has been presented. In order for ED expressed with Parzen PDFs to be minimized, we propose to use a set of randomly generated desired symbols at the receiver so that the PDF of the generated symbols matches that of the transmitted symbols. From the simulation results, the proposed method has shown superior error performance even in severe channel environments in which CMA has shown severe performance degradation. This indicates that the proposed algorithm can be considered relatively insensitive to ESR variations compared to CMA. As a field of ITL, ED minimization using Parzen PDFs has shown possibilities of being successfully applied to blind equalization.

  • PDF

A Study on Channel Equalization in Channels for Wireless Communication System (무선통신 시스템의 채널 환경에서 채널 등화에 관한 연구)

  • Kim, Dong-Ok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • The third generation mobile communications system requiring the reliable multimedia data transmission has provided with the reliable voice, data and video services over the variable propagation environment. However the broadband wireless multiple access technologies cause Inter Symbol Interference(ISI) or Multiple Access Interference(MAI) to degrade the performance of CDMA(Code Division Multiple Access) system. Constant Modulus Algorithm which is frequently used as the adaptive blind equalizers to remove the interfering signal has ill-convergence phenomenon without proper initialization. In this paper, new blind equalization method based on conventional CMA is proposed to improve the channel efficiency, and through computer simulation this is tested over the time varying fading environment of mobile communication system. consequently, new blind equalization method into concatenated Kalman filter with CMA is verified better than conventional CMA through adopting minimum mean square errors and eye- pattern obtained from algorithm are compared.

  • PDF

Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems (수중음향통신 시스템의 비트 오류 성능 향상을 위한 등화 모드 선택 방법)

  • Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.