• Title/Summary/Keyword: Adaptive bit-loading

Search Result 15, Processing Time 0.038 seconds

Distributed Bit Loading and Power Control Algorithm to Increase System Throughput of Ad-hoc Network (Ad-hoc 네트워크의 Throughput 향상을 위한 적응적 MCS 레벨 기반의 분산형 전력 제어 알고리즘)

  • Kim, Young-Bum;Wang, Yu-Peng;Chang, Kyung-Hi;Yun, Chang-Ho;Park, Jong-Won;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.315-321
    • /
    • 2010
  • In Ad-hoc networks, centralized power control is not suitable due to the absence of base stations, which perform the power control operation in the network to optimize the system performance. Therefore, each node should perform power control algorithm distributedly instead of the centralized one. The conventional distributed power control algorithm does not consider the adaptive bit loading operation to change the MCS (modulation and coding scheme) according to the received SINR (signal to interference and noise ratio), which limits the system throughput. In this paper, we propose a novel distributed bit loading and power control algorithm, which considers the adaptive bit loading operation to increase total system throughput and decrease outage probability. Simulation results show that the proposed algorithm performs much better than the conventional algorithm.

Adaptive Bit-loading Technique for BICM-OFDM Systems (BICM-OFDM 시스템을 위한 적응 비트 할당 기법)

  • Park, Dong-Chan;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.624-632
    • /
    • 2005
  • We consider an adaptive bit-loading technique for bit interleaved coded modulation-orthogonal frequency division multiplexing(BICM-OFDM) systems. By adjusting transmission parameter of each subcarrier adaptively depending on the subchannel state, the performance of OFDM system can be improved dramatically. In this paper, the number of bits for each subcarrier is allocated to minimize bit error rate keeping the constant throughput for the adaptive transmission technique of BICM-OFDM system which can be applied to real time transmission. Also, We use the discrete Lagrange multiplier method to get the optimum solution under the integer bit allocation constraint. Simulation results show that computational amount of the proposed bit allocation technique is not high and BICM-OfDM system using the proposed technique can get the SNR gain by 2$\~$3 dB over nonadaptive one.

An Efficient Adaptive Modulation Scheme for Wireless OFDM Systems

  • Lee, Chang-Wook;Jeon, Gi-Joon
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.

  • PDF

Adaptive Group Loading and Weighted Loading for MIMO OFDM Systems

  • Shrestha, Robin;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1959-1975
    • /
    • 2011
  • Adaptive Bit Loading (ABL) in Multiple-Input Multiple-Output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) is often used to achieve the desired Bit Error Rate (BER) performance in wireless systems. In this paper, we discuss some of the bit loading algorithms, compare them in terms of the BER performance, and present an effective and concise Adaptive Grouped Loading (AGL) algorithm. Furthermore, we propose a "weight factor" for loading algorithm to converge rapidly to the final solution for various data rate with variable Signal to Noise Ratio (SNR) gaps. In particular, we consider the bit loading in near optimal Singular Value Decomposition (SVD) based MIMO-OFDM system. While using SVD based system, the system requires perfect Channel State Information (CSI) of channel transfer function at the transmitter. This scenario of SVD based system is taken as an ideal case for the comparison of loading algorithms and to show the actual enhancement achievable by our AGL algorithm. Irrespective of the CSI requirement imposed by the mode of the system itself, ABL demands high level of feedback. Grouped Loading (GL) would reduce the feedback requirement depending upon the group size. However, this also leads to considerable degradation in BER performance. In our AGL algorithm, groups are formed with a number of consecutive sub-channels belonging to the same transmit antenna, with individual gains satisfying predefined criteria. Simulation results show that the proposed "weight factor" leads a loading algorithm to rapid convergence for various data rates with variable SNR gap values and AGL requires much lesser CSI compared to GL for the same BER performance.

Enhanced Bit-Loading Techniques for Adaptive MIMO Bit-Interleaved Coded OFDM Systems (적응 다중 안테나 Bit-Interleaved Coded OFDM 시스템을 위한 향상된 Bit-Loading 기법)

  • Cho, Jung-Ho;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • When channel state information (CSI) is available at the transmitter, the system throughput can be enhanced by adaptive transmissions and opportunistic multiuser scheduling. In this paper, we consider multiple-input multiple-output (MIMO) systems employing bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM). We first propose a bit-loading algorithm based on the Levin-Campello algorithm for the BIC-OFDM. Then we will apply this algorithm to the MIMO system with a finite set of constellations, by reassigning residual power on each stream Simulation results show that proposed bit-loading scheme which takes the residual power into account improves the system performance especially at high signal-to-noise ratio (SNR) range.

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

Exact Algorithms of Transforming Continuous Solutions into Discrete Ones for Bit Loading Problems in Multicarrier Systems

  • Chung, Yong-Joo;Kim, Hu-Gon
    • Management Science and Financial Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-84
    • /
    • 2010
  • In this study, we present the exact methods of transforming the continuous solutions into the discrete ones for two types of bit-loading problem, marginal adaptive (MA) and rate adaptive (RA) problem, in multicarrier communication systems. While the computational complexity of existing solution methods for discrete optimal solutions depends on the number of bits to be assigned (R), the proposed method determined by the number of subcarriers (N), making ours be more efficient in most cases where R is much larger than N. Furthermore our methods have some strength of their simpler form to make a practical use.

Study on Network Throughput of Power Line Communication System in In-Building Network (전력선 통신 시스템의 구내 네트워크 데이터 처리량 연구)

  • Jang, Ho-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.43-47
    • /
    • 2021
  • This paper investigates the network throughput of PLC (Power Line Communication) system in the in-building network. The OFDM (Orthogonal Frequency Division Multiplexing) modulation format and adaptive bit loading algorithm is used to minimize the effect of signal loss and noise on transmission performance in the power line channel characterized by frequency selective fading. The network throughput of the PLC system which consists of gateway and CPE(Customer Premise Equipment) PLC modem in the in-building network is measured by network performance measurement tool, iperf and analyzed according to the TCP (Transmission Control Protocol) window size.

Non-iterative Bit Loading Algorithm for OFDM in Independent and Correlated fading

  • Manry, John W.;Nagaraj, Santosh
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.163-175
    • /
    • 2014
  • This paper will focus on improving the performance of orthogonal frequency division multiplexing (OFDM) in Rayleigh fading environments. The proposed technique will use a previously published method that has been shown to improve OFDM performance in independent fading, based on ordered sub-carrier selection. Then, a simple non-iterative method for finding the optimal bit-loading allocation was proposed. It was also based on ordered sub-carrier selection. We compared both of these algorithms to an optimal bit-loading solution to determine their effectiveness in a correlated fading environment. The correlated fading was simulated using the JTC channel models. Our intent was not to create an optimal solution, but to create a low complexity solution that can be used in a wireless environment in which the channel conditions change rapidly and that require a simple algorithm for fast bit loading.

Low Complexity Bit Loading Algorithm with Power-constraint for OFDM-based Wireless Sensor Communication (OFDM 기반 무선 센서 망에서 에너지 제한을 고려한 복잡도 낮은 비트 할당 알고리즘)

  • Oh, Seoung-Youl;Ko, Hyeon-Mok;Kwon, Soon-Mok;Kim, Chee-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1483-1490
    • /
    • 2009
  • Orthogonal frequency division multiplexing (OFDM) has been investigated as an enabling technology for future wireless communications such as ad hoc, mesh and sensor networks. However, prior works on bit-loading lack consideration of the constraints on energy and computing facility in sensor networks. In this paper, we suggest an adaptive bit allocation algorithm for a frequency selective fading channel environment which exploits channel state information obtained through a feedback channel. The proposed algorithm significantly reduces computational complexity and satisfies the power budget. Also, its throughput is comparable to the optimum solution. Simulation results support the claim stated.