• 제목/요약/키워드: Adaptive Slicing

검색결과 24건 처리시간 0.021초

회전곡면의 직접ㆍ적응 단면화에 있어서 정밀도 향상 (Accuracy Enhancement in Direct & Adaptive Slicing of a Rotational Surface)

  • 박정환;신양호
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.185-191
    • /
    • 2000
  • Direct & adaptive slicing of sculptured surfaces in RP improves, quality & accuracy of the final product, compared to the slicing with uniform layer thickness or the slicing of facets (ie, STL). Present D&A slicing procedures adaptively compute the next layer thickness based on the surface information of current sliced contour, which assumes constant normal curvature values. In some cases, however. such assumption leads to intolerable slicing result which cannot correctly consider the entire local feature shape. We propose improved adaptive slicing algorithms which can determine near-optimal layer thickness, including illustrated examples.

  • PDF

쾌속조형에서 직교배열표를 이용한 단면화 (Slicing Using Orthogonal Arrays For Rapid Prototyping)

  • 김재형;김재정
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.69-75
    • /
    • 2000
  • At the stage of initial design, prototypes are needed for engineering and aesthetic purposes. In order to get a fast and non-expensive prototype, designers prefer rapid prototyping(RP) to any other means. In driving a 3D CAD model into rapid prototyping, sectioning the model is essential and there are two negotiation-needed targets, enhancing accuracy while taking less build-time, which makes adaptive slicing taken into account. In spite of the advantages of adaptive slicing, it is not yet applied to real RP machines because of the limits of hardwares. In this thesis, a new slicing algorithm which (1)uses several values of thickness available in a RP machine. (2)determines total number of layers to make the prototype within the intended time and (3)arranges the layers using orthogonal arrays to minimize the volume error caused by the difference between a given CAD model and a fabricated model is presented. And the algorithm is expected to have possibility of assisting RP machines to take the advantages of adaptive slicing.

  • PDF

등고선 간격과 수직 방향 특징선을 이용한 RP파트의 Adaptive 단면화 방법 (An Adaptive Slicing Method Using both Contour Lines and Vertical Character Lines)

  • 최광일;이관행
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 1998
  • Several adaptive and direct slicing methods have been developed to make the slice data for RP parts with better accuracy and speed. This research deals with a new adaptive slicing algorithm that shows drastic improvement in computing time for calculating the slices of a part. First, it uses less number of sampling points fur each slice in determining the thickness of the next slice. Secondly, the idea of contour map is utilized to determine the optimal sampling point on each slice. Thirdly, the calculation efficiency is further improved by introducing vertical character lines of the given part. The results in terms of accuracy and speed are compared with the existing methods.

  • PDF

An Adaptive Slicing Algorithm for Profiled Edge laminae Tooling

  • Yoo, Seung-Ryeol;Walczyk, Daniel
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권3호
    • /
    • pp.64-70
    • /
    • 2007
  • Of all the rapid tooling (RT) methods currently available, thick-layer laminated tooling is the most suitable for large-scale, low-cost dies and molds. Currently, the determination of a lamina's contour or profile and the associated slicing algorithms are based on existing rapid prototyping (RP) data manipulation technology. This paper presents a new adaptive slicing algorithm developed exclusively for profiled edge laminae (PEL) tooling PEL tooling is a thick-layer RT technique that involves the assembly of an array of laminae, whose top edges are simultaneously profiled and beveled using a line-of-sight cutting method based on a CAD model of the intended tool surface. The cutting profiles are based on the intersection curve obtained directly from the CAD model to ensure geometrical accuracy. The slicing algorithm determines the lamina thicknesses that minimize the dimensional error using a new tool shape error index. At the same time, the algorithm considers the available lamination thicknesses and desired lamina interface locations. We demonstrate the new slicing algorithm by developing a simple industrial PEL tool based on a CAD part shape.

Adaptive Slicing with Curvature Considerations

  • Banerjee, Ashis Gopal;Kumar, Aloke;Tejavath, Shankar;Choudhury, Asimava Roy
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, first order slice height calculation in Laminated Object Manufacturing (LOM) of free form surfaces is done with two different considerations: that a) the cutter trajectory is oriented in the direction of local absolute maximum more in number when compared to the case where the cutter trajectory is contained in the normal vertical section (NVS). However, it would help in achieving higher form accuracy of the final part because it would be a form of worst-case check. For the second proposed strategy, least number of slices results, thereby reducing overall build time drastically.

기능성 경사복합재의 적층조형을 위한 분해기반 공정계획 (Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials)

  • 신기훈;김성환
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

적응단면기법을 이용한 뇌모형제작 (Fabrication of a Brain Model using the Adaptive Slicing Technique)

  • 염상원;엄태준;주영철;김승우;공용해;천인국;방재철
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.485-490
    • /
    • 2003
  • RP(Rapid Prototyping) has been used in the various industrial applications. This paper presents the optimization techniques fur fabricated 3D model design using RP machine for the medical field. Once the original brain model data are obtained from 2D slices of MRI/CT machine, the data can be modeled as an optimal ellipse. The objective of this study includes optimization of fabrication time and surface roughness using the adaptive slicing method. It can reduce fabrication time without losing surface roughness quality by accumulating the slices with variable thickness. According to the parameter tuning and synthesis of its effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication. Therefore, accurate 3D brain model fabricated by RP machine can enable a surgeon to perform pre-operation. to make a decision for the operation sequence and to perceive the 3D positions in prototype, before delicate operation of actual surgery.

3D 프린팅 시간 단축을 위한 상하 레이어 폴리라인 병합 기반 가변 슬라이싱 (Adaptive Slicing by Merging Vertical Layer Polylines for Reducing 3D Printing Time)

  • 박지영;강주형;이혜인;신화선
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권5호
    • /
    • pp.17-26
    • /
    • 2016
  • 본 논문에서는 상하 레이어 폴리라인 병합(merging) 기반 가변(adaptive) 슬라이싱 기법을 제안한다. 먼저 출력 가능한 최소 두께 값을 사용하여 입력된 3D 폴리곤 모델을 균일(uniform) 슬라이싱하고 각 레이어 단면 영역의 경계에 대한 폴리라인(polyline)들을 생성한다. 다음으로 상하 연결성이 높은 폴리라인들을 그룹화한 후, 각 그룹 내에서 불필요한 폴리라인들을 삭제한다. 삭제할 레이어를 결정하기 위해 기하오차척도인 커스프 높이(cusp height)를 계산하고 이를 기반으로 적정 레이어 두께를 결정한다. 마지막으로레이어 두께 범위 내의 폴리라인들을 삭제함으로써 한 개 레이어로 병합된다. 제안 방법은 형상의 특징을 최대한 유지함과 동시에 출력 시간을 효과적으로 단축시킨다는 장점을 가진다. 성능 검증을위해 제안 기법과 전역적 가변 슬라이싱 기법을 사용하여 총 10개 3D 폴리곤 모델을 슬라이싱 한 후 출력 시간을 결정짓는 수치인 폴리라인의 총 길이를 측정하였다. 실험 결과, 모든 모델에 대해 제안한 기법의 폴리라인 총 길이가 더 짧았으며 이는 더 빠른 시간에 출력을 완료할 수 있다는 것을 의미한다.

모의수술용 뇌모형 제작시스템 개발을 위한 연구 (Study for Development of the Fabrication System of Brain Model for Surgery Emulation)

  • 염상원;방재철;엄태준;주영철;김승우;공용해;천인국;김범태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.298-298
    • /
    • 2000
  • This paper presents the optimization technique to analyze the effect of the design parameters of rapid prototyping system for human brain model fabrication. The optimization method considers the functional relationships among the design parameters such as thickness gap, shrink rate, and laser speed that govern the operation of fabrication system. This paper applies a discrete optimization technique as the optimization method to determine the dominant parameter values. Additional study includes manner of complement surface image of ellipse which approximates the brain model using the adaptive slicing and the offset contour. According to the parameters tuning and interaction of effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication.

  • PDF

ADAPTIVE SLICING ODE CONTROL USING FUZZY LOGIC SYSTEM

  • Yoo, Byungkook;Jeoung, Sacheul;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.26-30
    • /
    • 1995
  • In this study, the fuzzy approximator and sliding mode control (SMC) scheme are considered. An adaptive sliding mode control is proposed based on the SMC theory. This proposed control scheme is that a adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the sliding mode controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, an adaptive law is also intoduced and the stability of proposed control scheme are proven with simple adaptive law and roburst adaptive law. This proposed control scheme is applied to a single link robot arm.

  • PDF