• Title/Summary/Keyword: Adaptive Slicing

Search Result 24, Processing Time 0.025 seconds

Accuracy Enhancement in Direct & Adaptive Slicing of a Rotational Surface (회전곡면의 직접ㆍ적응 단면화에 있어서 정밀도 향상)

  • 박정환;신양호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.185-191
    • /
    • 2000
  • Direct & adaptive slicing of sculptured surfaces in RP improves, quality & accuracy of the final product, compared to the slicing with uniform layer thickness or the slicing of facets (ie, STL). Present D&A slicing procedures adaptively compute the next layer thickness based on the surface information of current sliced contour, which assumes constant normal curvature values. In some cases, however. such assumption leads to intolerable slicing result which cannot correctly consider the entire local feature shape. We propose improved adaptive slicing algorithms which can determine near-optimal layer thickness, including illustrated examples.

  • PDF

Slicing Using Orthogonal Arrays For Rapid Prototyping (쾌속조형에서 직교배열표를 이용한 단면화)

  • 김재형;김재정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.69-75
    • /
    • 2000
  • At the stage of initial design, prototypes are needed for engineering and aesthetic purposes. In order to get a fast and non-expensive prototype, designers prefer rapid prototyping(RP) to any other means. In driving a 3D CAD model into rapid prototyping, sectioning the model is essential and there are two negotiation-needed targets, enhancing accuracy while taking less build-time, which makes adaptive slicing taken into account. In spite of the advantages of adaptive slicing, it is not yet applied to real RP machines because of the limits of hardwares. In this thesis, a new slicing algorithm which (1)uses several values of thickness available in a RP machine. (2)determines total number of layers to make the prototype within the intended time and (3)arranges the layers using orthogonal arrays to minimize the volume error caused by the difference between a given CAD model and a fabricated model is presented. And the algorithm is expected to have possibility of assisting RP machines to take the advantages of adaptive slicing.

  • PDF

An Adaptive Slicing Method Using both Contour Lines and Vertical Character Lines (등고선 간격과 수직 방향 특징선을 이용한 RP파트의 Adaptive 단면화 방법)

  • 최광일;이관행
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • Several adaptive and direct slicing methods have been developed to make the slice data for RP parts with better accuracy and speed. This research deals with a new adaptive slicing algorithm that shows drastic improvement in computing time for calculating the slices of a part. First, it uses less number of sampling points fur each slice in determining the thickness of the next slice. Secondly, the idea of contour map is utilized to determine the optimal sampling point on each slice. Thirdly, the calculation efficiency is further improved by introducing vertical character lines of the given part. The results in terms of accuracy and speed are compared with the existing methods.

  • PDF

An Adaptive Slicing Algorithm for Profiled Edge laminae Tooling

  • Yoo, Seung-Ryeol;Walczyk, Daniel
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.64-70
    • /
    • 2007
  • Of all the rapid tooling (RT) methods currently available, thick-layer laminated tooling is the most suitable for large-scale, low-cost dies and molds. Currently, the determination of a lamina's contour or profile and the associated slicing algorithms are based on existing rapid prototyping (RP) data manipulation technology. This paper presents a new adaptive slicing algorithm developed exclusively for profiled edge laminae (PEL) tooling PEL tooling is a thick-layer RT technique that involves the assembly of an array of laminae, whose top edges are simultaneously profiled and beveled using a line-of-sight cutting method based on a CAD model of the intended tool surface. The cutting profiles are based on the intersection curve obtained directly from the CAD model to ensure geometrical accuracy. The slicing algorithm determines the lamina thicknesses that minimize the dimensional error using a new tool shape error index. At the same time, the algorithm considers the available lamination thicknesses and desired lamina interface locations. We demonstrate the new slicing algorithm by developing a simple industrial PEL tool based on a CAD part shape.

Adaptive Slicing with Curvature Considerations

  • Banerjee, Ashis Gopal;Kumar, Aloke;Tejavath, Shankar;Choudhury, Asimava Roy
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, first order slice height calculation in Laminated Object Manufacturing (LOM) of free form surfaces is done with two different considerations: that a) the cutter trajectory is oriented in the direction of local absolute maximum more in number when compared to the case where the cutter trajectory is contained in the normal vertical section (NVS). However, it would help in achieving higher form accuracy of the final part because it would be a form of worst-case check. For the second proposed strategy, least number of slices results, thereby reducing overall build time drastically.

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Fabrication of a Brain Model using the Adaptive Slicing Technique (적응단면기법을 이용한 뇌모형제작)

  • Yeom, Sang-Won;Um, Tai-Joon;Joo, Yung-Chul;Kim, Seung-Woo;Kong, Yong-Hae;Chun, In-Gook;Bang, Jae-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.485-490
    • /
    • 2003
  • RP(Rapid Prototyping) has been used in the various industrial applications. This paper presents the optimization techniques fur fabricated 3D model design using RP machine for the medical field. Once the original brain model data are obtained from 2D slices of MRI/CT machine, the data can be modeled as an optimal ellipse. The objective of this study includes optimization of fabrication time and surface roughness using the adaptive slicing method. It can reduce fabrication time without losing surface roughness quality by accumulating the slices with variable thickness. According to the parameter tuning and synthesis of its effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication. Therefore, accurate 3D brain model fabricated by RP machine can enable a surgeon to perform pre-operation. to make a decision for the operation sequence and to perceive the 3D positions in prototype, before delicate operation of actual surgery.

Adaptive Slicing by Merging Vertical Layer Polylines for Reducing 3D Printing Time (3D 프린팅 시간 단축을 위한 상하 레이어 폴리라인 병합 기반 가변 슬라이싱)

  • Park, Jiyoung;Kang, Joohyung;Lee, Hye-In;Shin, Hwa Seon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • This paper presents an adaptive slicing method based on merging vertical layer polylines. Firstly, we slice the input 3D polygon model uniformly with the minimum printable thickness, which results in bounding polylines of the cross section at each layer. Next, we group a set of layer polylines according to vertical connectivity. We then remove polylines in overdense area of each group. The number of layers to merge is determined by the layer thickness computed using the cusp height of the layer. A set of layer polylines are merged into a single polyline by removing the polylines within the layer thickness. The proposed method maintains the shape features as well as reduces the printing time. For evaluation, we sliced ten 3D polygon models using our method and a global adaptive slicing method and measured the total length of polylines which determines the printing time. The result showed that the total length from our method was shorter than the other method for all ten models, which meant that our method achieved less printing time.

Study for Development of the Fabrication System of Brain Model for Surgery Emulation (모의수술용 뇌모형 제작시스템 개발을 위한 연구)

  • 염상원;방재철;엄태준;주영철;김승우;공용해;천인국;김범태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.298-298
    • /
    • 2000
  • This paper presents the optimization technique to analyze the effect of the design parameters of rapid prototyping system for human brain model fabrication. The optimization method considers the functional relationships among the design parameters such as thickness gap, shrink rate, and laser speed that govern the operation of fabrication system. This paper applies a discrete optimization technique as the optimization method to determine the dominant parameter values. Additional study includes manner of complement surface image of ellipse which approximates the brain model using the adaptive slicing and the offset contour. According to the parameters tuning and interaction of effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication.

  • PDF

ADAPTIVE SLICING ODE CONTROL USING FUZZY LOGIC SYSTEM

  • Yoo, Byungkook;Jeoung, Sacheul;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.26-30
    • /
    • 1995
  • In this study, the fuzzy approximator and sliding mode control (SMC) scheme are considered. An adaptive sliding mode control is proposed based on the SMC theory. This proposed control scheme is that a adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the sliding mode controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, an adaptive law is also intoduced and the stability of proposed control scheme are proven with simple adaptive law and roburst adaptive law. This proposed control scheme is applied to a single link robot arm.

  • PDF