• Title/Summary/Keyword: Adaptive Search

Search Result 474, Processing Time 0.032 seconds

Comparison on Track Formation Range between TWS and Adaptive Tracking Using Markov Chain Analysis in a Radar System (레이더에서의 Markov Chain 분석을 이용한 TWS 방식과 Adaptive Tracking 방식의 추적 형성 거리 비교)

  • Ahn, Chang-Soo;Roh, Ji-Eun;Jang, Sung-Hoon;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • Compared with the TWS(Track While Scan) tracking that uses scan-to-scan correlation at search illuminations for targets track, a phased array radar can use adaptive tracking which assigns additional track illuminations and the track formation range can be improved as a result. In this paper, an adaptive tracking, the search and track illuminations of a target are synchronized such that the extra illuminations are evenly distributed between the search illuminations, is proposed. Markov chain and track formation range for the proposed adaptive tracking are shown with them for the conventional TWS. The simulation result shows that the proposed adaptive tracking has improved track formation range by 27.6 % compared with the conventional TWS tracking under same track confirmation criterion.

Fast Millimeter-Wave Beam Training with Receive Beamforming

  • Kim, Joongheon;Molisch, Andreas F.
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.512-522
    • /
    • 2014
  • This paper proposes fast millimeter-wave (mm-wave) beam training protocols with receive beamforming. Both IEEE standards and the academic literature have generally considered beam training protocols involving exhaustive search over all possible beam directions for both the beamforming initiator and responder. However, this operation requires a long time (and thus overhead) when the beamwidth is quite narrow such as for mm-wave beams ($1^{\circ}$ in the worst case). To alleviate this problem, we propose two types of adaptive beam training protocols for fixed and adaptive modulation, respectively, which take into account the unique propagation characteristics of millimeter waves. For fixed modulation, the proposed protocol allows for interactive beam training, stopping the search when a local maximum of the power angular spectrum is found that is sufficient to support the chosen modulation/coding scheme. We furthermore suggest approaches to prioritize certain directions determined from the propagation geometry, long-term statistics, etc. For adaptive modulation, the proposed protocol uses iterative multi-level beam training concepts for fast link configuration that provide an exhaustive search with significantly lower complexity. Our simulation results verify that the proposed protocol performs better than traditional exhaustive search in terms of the link configuration speed for mobile wireless service applications.

Fast Motion Estimation using Adaptive Search Region Prediction (적응적 탐색 영역 예측을 이용한 고속 움직임 추정)

  • Ryu, Kwon-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1187-1192
    • /
    • 2008
  • This paper proposes a fast motion estimation using an adaptive search region and a new three step search. The proposed method improved in the quality of motion compensation image as $0.43dB{\sim}2.19dB$, according as it predict motion of current block from motion vector of neigher blocks, and adaptively set up search region using predicted motion information. We show that the proposed method applied a new three step search pattern is able to fast motion estimation, according as it reduce computational complexity per blocks as $1.3%{\sim}1.9%$ than conventional method.

Adaptive motion estimation based on spatio-temporal correlations (시공간 상관성을 이용한 적응적 움직임 추정)

  • 김동욱;김진태;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1109-1122
    • /
    • 1996
  • Generally, moving images contain the various components in motions, which reange from a static object and background to a fast moving object. To extract the accurate motion parameters, we must consider the various motions. That requires a wide search egion in motion estimation. The wide search, however, causes a high computational complexity. If we have a few knowledge about the motion direction and magnitude before motion estimation, we can determine the search location and search window size using the already-known information about the motion. In this paper, we present a local adaptive motion estimation approach that predicts a block motion based on spatio-temporal neighborhood blocks and adaptively defines the search location and search window size. This paper presents a technique for reducing computational complexity, while having high accuracy in motion estimation. The proposed algorithm is introduced the forward and backward projection techniques. The search windeo size for a block is adaptively determined by previous motion vectors and prediction errors. Simulations show significant improvements in the qualities of the motion compensated images and in the reduction of the computational complexity.

  • PDF

Comparison Fast-Block Matching Motion Estimation Algorithm for Adaptive Search Range (탐색 범위를 적용한 비교 루틴 고속 블록 움직임 추정방법 알고리듬)

  • 임유찬;밍경육;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.295-298
    • /
    • 2002
  • This paper presents a fast block-matching algorithm to improve the conventional Three-Step Search (TSS) based method. The proposed Comparison Fast Block Matching Algorithm (CFBMA) begins with DAB for adaptive search range to choose searching method, and searches a part of search window that has high possibility of motion vector like other partial search algorithms. The CFBMA also considers the opposite direction to reduce local minimum, which is ignored in almost conventional based partial search algorithms. CFBMA uses the summation half-stop technique to reduce the computational load. Experimental results show that the proposed algorithm achieves the high computational complexity compression effect and very close or better image quality compared with TSS, SES, NTSS based partial search algorithms.

  • PDF

A search-based high resolution frequency estimation providing improved convergence characteristics in power system (전력계통에서 수렴성 향상을 위한 탐색기반 고분해능 주파수 추정기법)

  • An, Gi-Sung;Seo, Young-Duk;Chang, Tae-Gyu;Kang, Sang-Hee
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.999-1005
    • /
    • 2018
  • This paper proposed a search-based high resolution frequency estimation method in power systme. The proposed frequency estimation method adopts a slope-based adaptive search as a base of adaptive estimation structure. The architectural and operational parameters in this adaptive algorithm are changed using the information from context layer analysis of the signals including a localized full-search of spectral peak. The convergence rate of the proposed algorithm becomes much faster than those of other conventional slope-based adaptive algorithms by effectively reducing search range with the application of the localized full-search of spectrum peak. The improvements in accuracy and convergence rate of the proposed algorithm are confirmed through the performance comparison with other representative frequency estimation methods, such as, DFT(discrete Fourier transform) method, ECKF(extended complex Kalman filter), and MV(minimum variable) method.

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

An Adaptive Motion Estimation Algorithm Using Spatial Correlation (공간 상관성을 이용한 적응적 움직임 추정 알고리즘)

  • 박상곤;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF