• 제목/요약/키워드: Adaptive Neural Networks

검색결과 326건 처리시간 0.022초

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • 컴퓨터교육학회논문지
    • /
    • 제6권3호
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

굴곡있는 비선형 도로 노면의 최적 인식을 위한 평가 신경망 (A Estimated Neural Networks for Adaptive Cognition of Nonlinear Road Situations)

  • 김종만;김영민;황종선;신동용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.573-577
    • /
    • 2002
  • A new estimated neural networks are proposed in order to measure nonlinear road environments in realtime. This new neural networks is Error Estimated Neural Networks. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we control 7 degree simulation, this controller and driver were proved to be effective to drive a car in the environments of nonlinear road systems.

  • PDF

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • 제23권2호
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF

신경회로망을 이용한 비선형 플랜트의 적응제어 (Adaptive controls for non-linear plant using neural network)

  • 정대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.215-218
    • /
    • 1997
  • A dynamic back-propagation neural network is addressed for adaptive neural control system to approximate non-linear control system rather than static networks. It has the capability to represent the approximation of nonlinear system without mathematical analysis and to carry out the on-line learning algorithm for real time application. The simulated results show fast tracking capability and adaptive response by using dynamic back-propagation neurons.

  • PDF

신경회로망 구조 최적화를 통한 비행제어시스템 설계 (Optimum Design of Neural Networks for Flight Control System)

  • 최규호;최동욱;김유단
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.75-84
    • /
    • 2003
  • 본 논문에서는 모델링 오차나 공력계수의 불확실성이 포함되어 있는 항공기 시스템에 대해서 신경회로망을 이용한 새로운 비선형 제어시스템 설계기법을 제안하였다. 비선형 적응제어법칙을 이용하여 신경회로망의 연결가중치를 변화시켰으며, 슬라이딩 제어법칙을 이용하여 신경회로망의 추정오차를 보상하였다. 제어시스템의 성능을 결정짓는 제어 매개변수들과 신경회로망 구조를 설계하기 위한 방법을 제안하였으며, 유전자 알고리듬을 이용하여 제어 매개변수들과 신경회로망 구조를 최적화하였따. 신경회로망의 구조탐색에 적합하도록 다수의 개체군을 형성하여 개체와 군이 동시에 전화하도록 하였다. 제안된 유전자 알고리듬에 의해 최적화된 구조를 갖는 신경회로망을 이용한 제어시스템을 항공기 종운동 모델에 적용하여 성능을 검증하였다.

신경망을 이용한 제어기에 인가된 입력 신호의 추정 (Input Signal Estimation About Controller Using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권8호
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

신경망을 이용한 제어기에 인가된 입력 신호의 추정 (Input signal estimation about controller using neural networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.18-20
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

  • PDF

신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상 (Convergence Progress about Applied Gain of PID Controller using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF

신경망을 이용한 적응제어기의 추적 성능 평가 (Tracking performance evaluation of adaptive controller using neural networks)

  • 최수열;박재형;박선국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1561-1564
    • /
    • 1997
  • In the study, simulation result was studied by connecting PID controller in series to the established Neural Networks Controller. Neural Network model is composed of two layers to evaluate tracking performance improvement. The reqular dynamic characteristics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance inprovement was developed more in case of connecting PID than Neural Network Contoller and that tracking plant parameter in 251 sample was approached rapidly case of time variable.

  • PDF

유연성 로봇 링크의 위치제어를 위한 신경망 제어기의 설계 (The Design of Neural Networks Controller for Position Control of Flexible Robot Link)

  • 탁한호;이주원;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.121-124
    • /
    • 1997
  • In this paper, applications of self-recurrent neural networks based of adaptive controller to position control of flexible robot link are considered. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. Therefore, a comparative analysis was mode with linear controller through an simulation. The results are presented to illustrate the advantages and improved performance of the proposed position tracking controller over the conventional linear controller.

  • PDF