• Title/Summary/Keyword: Adaptive Neural Network

Search Result 878, Processing Time 0.027 seconds

Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically (경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘)

  • 신광철;한상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1072-1079
    • /
    • 2003
  • This study is purported for suggesting a new clustering algorithm that enables incremental categorization of numerous documents. The suggested algorithm adopts the natures of the spherical k-means algorithm, which clusters a mass amount of high-dimensional documents, and the fuzzy ART(adaptive resonance theory) neural network, which performs clustering incrementally. In short, the suggested algorithm is a combination of the spherical k-means vector space model and concept vector and fuzzy ART vigilance parameter. The new algorithm not only supports incremental clustering and automatically sets the appropriate number of clusters, but also solves the current problems of overfitting caused by outlier and noise. Additionally, concerning the objective function value, which measures the cluster's coherence that is used to evaluate the quality of produced clusters, tests on the CLASSIC3 data set showed that the newly suggested algorithm works better than the spherical k-means by 8.04% in average.

Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF (LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.

Unsupervised Incremental Learning of Associative Cubes with Orthogonal Kernels

  • Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF

NN Saturation and FL Deadzone Compensation of Robot Systems (로봇 시스템의 신경망 포화 및 퍼지 데드존 보상)

  • Jang, Jun-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.187-192
    • /
    • 2008
  • A saturation and deadzone compensator is designed for robot systems using fuzzy logic (FL) and neural network (NN). The classification property of FL system and the function approximation ability of the NN make them the natural candidate for the rejection of errors induced by the saturation and deadzone. The tuning algorithms are given for the fuzzy logic parameters and the NN weights, so that the saturation and deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The NN saturation and FL deadzone compensator is simulated on a robot system to show its efficacy.

  • PDF

ANN Rotor Resistance Estimation of Induction Motor Drive using Multi-AFLC (다중 AFLC를 이용한 유도전동기 드라이브의 ANN 회전자저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.45-56
    • /
    • 2011
  • This paper is proposed artificial neural network(ANN) rotor resistance estimation of induction motor drive controlled by multi-adaptive fuzzy learning controller(AFLC). A simple double layer feedforward ANN trained by the back-propagation technique is employed in the rotor resistance identification. In this estimator, double models of the state variable estimations are used; one provides the actual induction motor output states and the other gives the ANN model output states. The total error between the desired and actual state variables is then back propagated to adjust the weights of the ANN model, so that the output of this model tracks the actual output. When the training is completed, the weights of the ANN correspond to the parameters in the actual motor. The estimation and control performance of ANN and multi-AFLC is evaluated by analysis for various operating conditions. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.

A Study on Development of Algorithm for Seam Tracking by Considering Weld Defects in Horizontal Fillet Welding (수평필릿용접에서 용접결함을 고려한 용접선 자동추적 알고리즘개발에 관한 연구)

  • 문형순;나석주
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.139-141
    • /
    • 1996
  • Among various welding parameters, the welding current which is inversely proportional to the tip-to-workpiece distance in GMAW is an essential parameter to monitor the GMAW process of horizontal fillet joints. For the case of weld defect such as overlap in horizontal fillet welding, therefore, the signal processing for process monitoring or automatic seam tracking should be modified by considering the weld pool surface geometry including the corresponding weld defect. In other words, the adequate signal processing algorithm is indispensible to improve the performance of the arc sensor. However, arc sensor algorithm already developed usually focus on weld seam tracing but do not considering the weld qualities. In this paper, various experiments were carried out to investigate the tendencies of the weld defects when weaving motion is added, and the experimental method based on 2$^n$ factorial design was proposed for deriving the mathematical model between the leg length and the various welding conditions. Moreover, a signal processing method based on the artificial neural network(Adaptive Resonance Theory) was proposed far discriminating the current signal of sound weld beads from that of weld beads with overlap. Finally, the algorithm for weld seam tracking combined with the mathematical modeling and the signal processing method was carried out to track the weld line in conjunction with the improvement of the weld qualities. The reliability of the proposed algorithms were evaluated through various experiments, which showed that the proposed algorithms could be effectively used for arc welding automation.

  • PDF

Printed Hangul Recognition with Adaptive Hierarchical Structures Depending on 6-Types (6-유형 별로 적응적 계층 구조를 갖는 인쇄 한글 인식)

  • Ham, Dae-Sung;Lee, Duk-Ryong;Choi, Kyung-Ung;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Due to a large number of classes in Hangul character recognition, it is usual to use the six-type preclassification stage. After the preclassification, the first consonent, vowel, and last consonent can be classified separately. Though each of three components has a few of classes, classification errors occurs often due to shape similarity such as 'ㅔ' and 'ㅖ'. So this paper proposes a hierarchical recognition method which adopts multi-stage tree structures for each of 6-types. In addition, to reduce the interference among three components, the method uses the recognition results of first consonents and vowel as features of vowel classifier. The recognition accuracy for the test set of PHD08 database was 98.96%.