• Title/Summary/Keyword: Adaptive Network

Search Result 2,187, Processing Time 0.025 seconds

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

Improved Adaptive Neural Network Autopilot for Track-keeping Control of Ships: Design and Simulation

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.259-265
    • /
    • 2006
  • This paper presents an improved adaptive neural network autopilot based on our previous study for track-keeping control of ships. The proposed optimal neural network controller can automatically adapt its learning rate and number of iterations. Firstly, the track-keeping control system of ships is described For the track-keeping control task, a way-point based guidance system is applied To improve the track-keeping ability, the off-track distance caused by external disturbances is considered in learning process of neural network controller. The simulations of track-keeping performance are presented under the influence of sea current and wind as well as measurement noise. The toolbox for track-keeping simulation on Mercator chart is also introduced.

An Adaptive Neural Network Control Method for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2341-2344
    • /
    • 2001
  • In recent years the neural network known as a sort of the intelligent control strategy is used as a powerful tool for designing control system since it has learning ability. But it is difficult for neural network controllers to guarantee the stability of control systems. In this paper we try connecting a radial basis function network to an adaptive control strategy. Radial basis function networks are simpler and easier to handle than multilayer perceptrons. We use the radial basis function network to generate control input signals that are similar to the control inputs of adaptive control using linear reparameterization of the robot manipulator. We adopt the saturation function as an auxiliary controller. This paper also proves mathematically the stability of the control system under the existence of disturbances and modeling errors.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

Design of an Adaptive Control System using Neural Network (신경 회로망을 이용한 적응 제어 시스템의 설계)

  • Jang, Tae-In;Rhee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

A NNAC using narrowband interference signal control in cellular mobile communication systems (셀룰라 이동 통신에서 NNAC를 이용한 협대역 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.542-546
    • /
    • 2009
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow - band interference and the co-channel interference.

A Study on the Adaptive Neural Network Filter for Signal Detection (신호 검출을 위한 적응형 신경망 필터에 관한 연구)

  • 안종구;추형석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.132-137
    • /
    • 2004
  • In this paper, the adaptive noise canceler using neural network with backpropagation is designed. The adaptive noise canceler using the least mean square algorithm has the large correlativity of the reference signal. The performance of the adaptive noise canceler shows the limitation when the information signal is relatively small to the noise. The system proposed in this paper plays an important role in denoising these signals. In addition, the experiments are carried out to analyze the effects of the number of hidden layers and nodes about the system. The performance of the proposed adaptive noise canceler is compared with that of the system which is used the least mean square algorithm.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

Policy-Based QoS Management for SLA-Driven Adaptive Routing

  • Katsikogiannis, George;Mitropoulos, Sarandis;Douligeris, Christos
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.301-311
    • /
    • 2013
  • This paper proposes a policy-based quality of service (QoS) management framework for adaptive routing decisions. We present an approach considering interior gateway protocol (IGP) for path discovery mechanisms and QoS-aware policies for configuring the network elements. The integration of the aforementioned modules into this policy-based network management (PBNM) system is demonstrated by conducting experiments in a real environment, the hellenic public administration network SYZEFXIS. These experiments combine different traffic conditioning mechanisms through event detectors, consider IP service level agreement mechanisms that interoperate with the PBNM system and analyze the enforcement of IGP and QoS policies. Finally, validation and measurement tools are used to prove the efficiency of this framework. It is shown that this architecture offers significantly increased performance and learning capabilities, while the PBNM system achieves adaptive QoS routing through automated configuration considering the avoidance of suboptimal routing issues or under-performance conditions of the network entities.