• 제목/요약/키워드: Adaptive Learning System

검색결과 504건 처리시간 0.026초

적응 뉴럴-퍼지 제어시스템의 설계에 관한 연구 (On Designing an Adaptive Neural-Fuzzy Control System)

  • 김성현;김용호;최영길;심귀보;전홍태
    • 전자공학회논문지A
    • /
    • 제30A권4호
    • /
    • pp.37-43
    • /
    • 1993
  • As an approach to develope the intelligent control scheme, this paper will propose an adaptive neural-fuzzy control scheme. The proposed neural-fuzzy control system, which consists of the Fuzzy-Neural Controller(FNC) and Model Neural Network(MNN), has two important characteristics of adaptation and learning. The error back propagation algorithm has been adopted as a learning technique.

  • PDF

THE FIT BETWEEN NEW PRODUCT STRATEGY AND VALUE CHAIN STRATEGY : A SYSTEM DYNAMICS PERSPECTIVE

  • Heungshik Oh;Kim, Bowon
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.37-43
    • /
    • 2001
  • New product development has been a key element fur organizational evolution. The bulk of research about new product strategy has focused solely on new product development function itself. This paper investigates cross-functional elements in new product development. More specifically, we suggest that there must exist a fit between new product strategy and value chain strategy. It means that, in order to support new product development activity, there must exist a relevant value chain strategy. We consider three types of integration - internal integration, customer integration, and supplier integration - as strategic elements of value chain strategy. For the case of new product strategy, we consider market newness and product technology unfamiliarity as strategic elements. We also consider two types of learning characteristic, i.e., \\\"fast-adaptive learning\\\" and \\\"slow-adaptive leaning\\\" as control factor. Learning characteristic represents firms organizational capability related with organizational learning. For example, fur fast-adaptive learning case, the effect of integration appears early in time. System dynamics simulation is employed to verify our research framework. The results exhibit that there must exist cross-functional relationships between value chain strategy and new product strategy in order to shorten total development time.al development time.

  • PDF

적응 퍼지-뉴로 제어기의 설계와 응용 (Design & application of adaptive fuzzy-neuro controllers)

  • 강경운;김용민;강훈;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

축교정을 위한 기하학적 진직도 적응제어기 설계 (Design of a Geometric Adaptive Straightness Controller for Shaft Straightening Process)

  • 김승철;정성종
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2451-2460
    • /
    • 2000
  • In order to minimize straightness error of deflected shaft, a geometric adaptive straightness controller system is studied. A multi-step straightening and a three-point bending process have been developed for the geometric adaptive straightness controller. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and real-time hydraulic control methodology are studied for the three-point bending process. By deflection pattern analysis and fuzzy self-learning method in the multi-step straightening process, a straightening point and direction, desired permanent deflection and supporting condition are determined. An automatic straightening machine has been fabricated for rack bars by using the developed ideas. Validity of the proposed system is verified through experiments.

Hidden LMS 적응 필터링 알고리즘을 이용한 경쟁학습 화자검증 (Speaker Verification Using Hidden LMS Adaptive Filtering Algorithm and Competitive Learning Neural Network)

  • 조성원;김재민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권2호
    • /
    • pp.69-77
    • /
    • 2002
  • Speaker verification can be classified in two categories, text-dependent speaker verification and text-independent speaker verification. In this paper, we discuss text-dependent speaker verification. Text-dependent speaker verification system determines whether the sound characteristics of the speaker are equal to those of the specific person or not. In this paper we obtain the speaker data using a sound card in various noisy conditions, apply a new Hidden LMS (Least Mean Square) adaptive algorithm to it, and extract LPC (Linear Predictive Coding)-cepstrum coefficients as feature vectors. Finally, we use a competitive learning neural network for speaker verification. The proposed hidden LMS adaptive filter using a neural network reduces noise and enhances features in various noisy conditions. We construct a separate neural network for each speaker, which makes it unnecessary to train the whole network for a new added speaker and makes the system expansion easy. We experimentally prove that the proposed method improves the speaker verification performance.

시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어 (A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty)

  • 이수영;정명진
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

적응형 온라인 학습환경에서 학습자 특성 및 AI튜터 추천문항 학습활동의 학업성취도 예측력 탐색 (An Inquiry into Prediction of Learner's Academic Performance through Learner Characteristics and Recommended Items with AI Tutors in Adaptive Learning)

  • 최민선;정재삼
    • 한국IT서비스학회지
    • /
    • 제20권4호
    • /
    • pp.129-140
    • /
    • 2021
  • Recently, interest in AI tutors is rising as a way to bridge the educational gap in school settings. However, research confirming the effectiveness of AI tutors is lacking. The purpose of this study is to explore how effective learner characteristics and recommended item learning activities are in predicting learner's academic performance in an adaptive online learning environment. This study proposed the hypothesis that learner characteristics (prior knowledge, midterm evaluation) and recommended item learning activities (learning time, correct answer check, incorrect answer correction, satisfaction, correct answer rate) predict academic achievement. In order to verify the hypothesis, the data of 362 learners were analyzed by collecting data from the learning management system (LMS) from the perspective of learning analytics. For data analysis, regression analysis was performed using the regsubset function provided by the leaps package of the R program. The results of analyses showed that prior knowledge, midterm evaluation, correct answer confirmation, incorrect answer correction, and satisfaction had a positive effect on academic performance, but learning time had a negative effect on academic performance. On the other hand, the percentage of correct answers did not have a significant effect on academic performance. The results of this study suggest that recommended item learning activities, which mean behavioral indicators of interaction with AI tutors, are important in the learning process stage to increase academic performance in an adaptive online learning environment.

신경회로망을 이용한 비선형 플랜트의 적응제어 (Adaptive controls for non-linear plant using neural network)

  • 정대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.215-218
    • /
    • 1997
  • A dynamic back-propagation neural network is addressed for adaptive neural control system to approximate non-linear control system rather than static networks. It has the capability to represent the approximation of nonlinear system without mathematical analysis and to carry out the on-line learning algorithm for real time application. The simulated results show fast tracking capability and adaptive response by using dynamic back-propagation neurons.

  • PDF

실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어 (Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm)

  • 장성욱;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF