표정은 사람의 감정을 표현하는 대표적인 수단이다. 이러한 이유로 표정은 사람의 의도를 컴퓨터에 전하는데 효과적인 방법으로 사용될 수 있다. 본 논문에서는 2D 영상에서 사람의 표정을 보다 빠르고 정확하게 인식하기 위해 Discrete Adaboost 알고리즘과 신경망 알고리즘을 통합하는 방법을 제안한다. 1차로 Adaboost 알고리즘으로 영상에서 얼굴의 위치와 크기를 찾고, 2차로 표정별로 학습된 Adaboost 강분류기를 이용하여 표정별 출력 값을 얻으며, 이를 마지막으로 Adaboost 강분류기 값으로 학습된 신경망 알고리즘의 입력으로 이용하여 최종 표정을 인식한다. 제안하는 방법은 실시간이 보장된 Adaboost 알고리즘의 특성과 정확성을 개선하는 신경망 기반 인식기의 신뢰성을 적절히 활용함으로서 전체 인식기의 실시간성을 확보하면서도 정확성을 향상시킨다. 본 논문에서 구현된 알고리즘은 평온, 행복, 슬픔, 화남, 놀람의 5가지 표정에 대해 평균 86~95%의 정확도로 실시간 인식이 가능하다.
Adaboost 학습 알고리즘은 학습 단계마다 가장 좋은 특징을 선택하도록 하는 학습 알고리즘 이다. 각 학습 단계에서는 최적의 특징을 선택하기 위해 특정 임계값과 그에 대한 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 하지만, 임계값을 이용하는 방법은 최적의 오차율을 검출하는데 있어 효율적인 방법이 아니다. 본 논문에서는 최적의 오차율을 검출하기 위한 퍼지 Adaboost 기법을 제안한다. 퍼지를 통해 결정 경계를 유연하게 한 Adaboost는 학습 단계가 적어도 좋은 성능을 보이는 장점이 있다. 기존의 Adaboost는 학습 전에 학습데이터에 대한 가중치를 동일하게 할당한다. 하지만, 본 논문에서는 이에 대한 가중치를 확률을 이용하여 초기 가중치를 다르게 줌으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에서는 기존의 Adaboost와 제안하는 방법에 대한 성능 평가를 통해, 퍼지 Adaboost가 기존 방법에 비해 좋은 결과를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2720-2736
/
2013
Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.
본 논문에서는 최적 특징점 선택기법를 적용한 다중 최적 Adaboost 분류기를 기반으로 새로운 차량 검출 알고리즘을 제안한다. 제안하는 알고리즘은 2 가지 주요 모듈로 구성된다. 첫 번째는 설치된 카메라의 사이트 모델링을 이용한 영상 스케일링을 기반으로 하는 이론적 DDISF(Distance Dependent Image Scaling Factor) 모듈이며, 두 번째는 차량과 카메라의 거리에 대응하는 최적 Haar-like 특징을 활용하는 것이다. 실험 결과 제안하는 알고리즘은 기존의 방법에 비하여 인식 성능이 개선됨을 확인하였다. 제안하는 알고리즘은 96.43% 의 인식률과 약 3.77%의 오검출이 발생하였다. 이러한 성능은 기존의 표준 Adabooost 알고리즘에 비하여 각각 3.69%와 1.28% 의 성능을 개선한 것이다.
본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.
In a tall building construction with reinforced concrete structures, the selection of an appropriate formwork system is a crucial factor for the success of the project. Thus, selecting an appropriate formwork system affects the entire construction duration and cost, as well as subsequent construction activities. However, in practice, the selection of an appropriate formwork system has depended mainly on the intuitive and subjective opinion of working level employees with restricted experience. Therefore, in this study, a formwork system selection model using the Adaboost algorithm is proposed to support the selection of a formwork system that is suitable for the construction site conditions. To validate the applicability of the proposed model, the selection models Adaboost and ANN were both applied to actual case data of tall building construction in Korea. The Adaboost model showed slightly better accuracy than that of the ANN model. The Adaboost model can assist engineers to determine the appropriate formwork system at the inception of future projects.
Adaboost 알고리즘은 얼굴인식을 위한 Haar-like feature들을 이용하기 위해 가장 널리 쓰이고 있는 알고리즘이다. 매우 빠르며 효율적인 성능을 보이고 있으며 하나의 모델이미지가 존재하는 단일분포 데이터에 대해 매우 효율적이다. 그러나 정면 얼굴과 측면 얼굴을 혼합한 인식 등 둘 이상의 모델이미지를 가진 다중 분포모델에 대해서는 그 성능이 저하된다. 이는 단일 학습 알고리즘의 선형결합에 의존하기 때문에 생기는 현상이며 그 응용범위의 한계를 지니게 된다. 본 연구에서는 이를 해결하기 위한 제안으로서 Decision Tree를 Harr-like Feature와 결합하는 기법을 제안한다. Decision Tree를 사용 함으로서 보다 넓은 분야의 문제를 해결하기 위해 기존의 Decision Tree를 Harr-like Feature에 적합하도록 개선한 HDCT라고 하는 Harr-like Feature를 활용한 Decision Tree를 제안하였으며 이것의 성능을 Adaboost와 비교 평가하였다.
본 연구는 여자핸드볼 경기에서 발생되는 움직임 정보를 바탕으로 앙상블 기법의 배깅과 부스팅 알고리즘의 예측력을 비교하고, 움직임 정보의 활용가능성을 분석하는데 목적이 있다. 연구의 목적을 달성하기 위하여 15번의 연습경기에서 관성센서를 활용해 수집한 움직임 정보를 활용한 경기 결과예측을 랜덤포레스트와 Adaboost 알고리즘을 활용해 비교·분석하였다. 연구결과 첫째, 랜덤포레스트 알고리즘의 예측률은 66.9 ± 0.1%로 나타났으며, Adaboost 알고리즘의 예측률은 65.6 ± 1.6%로 나타났다. 둘째, 랜덤포레스트는 승리 결과는 모두 예측하였고, 패배의 결과는 하나도 예측하지 못하였다. 반면, Adaboost 알고리즘은 승리 예측 91.4%, 패배예측 10.4%라고 나타났다. 셋째, 알고리즘의 적합성 여부에서 랜덤포레스트는 과적합의 오류가 없었지만, Adaboost는 과적합의 오류가 나타났다. 본 연구결과를 바탕으로 스포츠경기를 예측할 때 움직임 정보도 활용 가능성을 확인하였으며, 랜덤포레스트 알고리즘이 보다 우수함을 확인하였다.
패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.
MCT-Adaboost 학습 알고리즘은 각 학습 단계에서 배경과 객체를 구분하는 가장 좋은 특징을 찾는 학습 알고리즘이다. 각 학습 단계에서는 최적의 특징을 검출하기 위해 학습 데이터에서 각 특징의 각 커널에서 모든 오차율을 산정하고, 각 특징에서 모든 커널들의 합을 하였을 경우 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 이를 선택하고 다음 학습때 영향을 주는 약분류기에서 기존의 MCT-Adaboost 방법은 경판정 방법으로 사용하였다. 이 방법은 특정 커널에서 객체 데이터와 배경 데이터의 오류율이 유사할 경우, 한쪽으로 판정하기 때문에, 제대로 된 결과값을 산정할 수 없는 문제가 있다. 이를 유연하게 하기 위해 본 연구에서는 연판정을 이용한 약분류기 방법을 제안한다. 기존의 MCT-Adaboost는 초기 가중치를 동일하게 산정한다. 하지만, 이는 데이터의 특성을 모른다는 가정하에 설계된 초기 가중치 설정이다. 본 논문에서는 데이터 분포를 이용하여 가중치를 확률적으로 다르게 할당함으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에는 기존의 MCT-Adaboost가 제안하는 성능평가를 통해, 본 연구가 제안하는 방법이 기존 방법에 비해 좋은 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.