• Title/Summary/Keyword: Adaboost Algorithm

검색결과 106건 처리시간 0.021초

에이다부스트와 신경망 조합을 이용한 표정인식 (Facial Expression Recognition by Combining Adaboost and Neural Network Algorithms)

  • 홍용희;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.806-813
    • /
    • 2010
  • 표정은 사람의 감정을 표현하는 대표적인 수단이다. 이러한 이유로 표정은 사람의 의도를 컴퓨터에 전하는데 효과적인 방법으로 사용될 수 있다. 본 논문에서는 2D 영상에서 사람의 표정을 보다 빠르고 정확하게 인식하기 위해 Discrete Adaboost 알고리즘과 신경망 알고리즘을 통합하는 방법을 제안한다. 1차로 Adaboost 알고리즘으로 영상에서 얼굴의 위치와 크기를 찾고, 2차로 표정별로 학습된 Adaboost 강분류기를 이용하여 표정별 출력 값을 얻으며, 이를 마지막으로 Adaboost 강분류기 값으로 학습된 신경망 알고리즘의 입력으로 이용하여 최종 표정을 인식한다. 제안하는 방법은 실시간이 보장된 Adaboost 알고리즘의 특성과 정확성을 개선하는 신경망 기반 인식기의 신뢰성을 적절히 활용함으로서 전체 인식기의 실시간성을 확보하면서도 정확성을 향상시킨다. 본 논문에서 구현된 알고리즘은 평온, 행복, 슬픔, 화남, 놀람의 5가지 표정에 대해 평균 86~95%의 정확도로 실시간 인식이 가능하다.

퍼지 Adaboost를 이용한 객체 검출 (Object Detection using Fuzzy Adaboost)

  • 김기상;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제16권5호
    • /
    • pp.104-112
    • /
    • 2016
  • Adaboost 학습 알고리즘은 학습 단계마다 가장 좋은 특징을 선택하도록 하는 학습 알고리즘 이다. 각 학습 단계에서는 최적의 특징을 선택하기 위해 특정 임계값과 그에 대한 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 하지만, 임계값을 이용하는 방법은 최적의 오차율을 검출하는데 있어 효율적인 방법이 아니다. 본 논문에서는 최적의 오차율을 검출하기 위한 퍼지 Adaboost 기법을 제안한다. 퍼지를 통해 결정 경계를 유연하게 한 Adaboost는 학습 단계가 적어도 좋은 성능을 보이는 장점이 있다. 기존의 Adaboost는 학습 전에 학습데이터에 대한 가중치를 동일하게 할당한다. 하지만, 본 논문에서는 이에 대한 가중치를 확률을 이용하여 초기 가중치를 다르게 줌으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에서는 기존의 Adaboost와 제안하는 방법에 대한 성능 평가를 통해, 퍼지 Adaboost가 기존 방법에 비해 좋은 결과를 보였다.

A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2720-2736
    • /
    • 2013
  • Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.

Adaboost 최적 특징점을 이용한 차량 검출 (Vehicle Detection Using Optimal Features for Adaboost)

  • 김규영;이근후;김재호;박장식
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1129-1135
    • /
    • 2013
  • 본 논문에서는 최적 특징점 선택기법를 적용한 다중 최적 Adaboost 분류기를 기반으로 새로운 차량 검출 알고리즘을 제안한다. 제안하는 알고리즘은 2 가지 주요 모듈로 구성된다. 첫 번째는 설치된 카메라의 사이트 모델링을 이용한 영상 스케일링을 기반으로 하는 이론적 DDISF(Distance Dependent Image Scaling Factor) 모듈이며, 두 번째는 차량과 카메라의 거리에 대응하는 최적 Haar-like 특징을 활용하는 것이다. 실험 결과 제안하는 알고리즘은 기존의 방법에 비하여 인식 성능이 개선됨을 확인하였다. 제안하는 알고리즘은 96.43% 의 인식률과 약 3.77%의 오검출이 발생하였다. 이러한 성능은 기존의 표준 Adabooost 알고리즘에 비하여 각각 3.69%와 1.28% 의 성능을 개선한 것이다.

저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘 (Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System)

  • 장정욱;인치호
    • 한국ITS학회 논문지
    • /
    • 제19권3호
    • /
    • pp.129-136
    • /
    • 2020
  • 본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.

Formwork System Selection Model for Tall Building Construction Using the Adaboost Algorithm

  • Shin, Yoon-Seok
    • 한국건축시공학회지
    • /
    • 제11권5호
    • /
    • pp.523-529
    • /
    • 2011
  • In a tall building construction with reinforced concrete structures, the selection of an appropriate formwork system is a crucial factor for the success of the project. Thus, selecting an appropriate formwork system affects the entire construction duration and cost, as well as subsequent construction activities. However, in practice, the selection of an appropriate formwork system has depended mainly on the intuitive and subjective opinion of working level employees with restricted experience. Therefore, in this study, a formwork system selection model using the Adaboost algorithm is proposed to support the selection of a formwork system that is suitable for the construction site conditions. To validate the applicability of the proposed model, the selection models Adaboost and ANN were both applied to actual case data of tall building construction in Korea. The Adaboost model showed slightly better accuracy than that of the ANN model. The Adaboost model can assist engineers to determine the appropriate formwork system at the inception of future projects.

다중 분포 학습 모델을 위한 Haar-like Feature와 Decision Tree를 이용한 학습 알고리즘 (Learning Algorithm for Multiple Distribution Data using Haar-like Feature and Decision Tree)

  • 곽주현;원일용;이창훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.43-48
    • /
    • 2013
  • Adaboost 알고리즘은 얼굴인식을 위한 Haar-like feature들을 이용하기 위해 가장 널리 쓰이고 있는 알고리즘이다. 매우 빠르며 효율적인 성능을 보이고 있으며 하나의 모델이미지가 존재하는 단일분포 데이터에 대해 매우 효율적이다. 그러나 정면 얼굴과 측면 얼굴을 혼합한 인식 등 둘 이상의 모델이미지를 가진 다중 분포모델에 대해서는 그 성능이 저하된다. 이는 단일 학습 알고리즘의 선형결합에 의존하기 때문에 생기는 현상이며 그 응용범위의 한계를 지니게 된다. 본 연구에서는 이를 해결하기 위한 제안으로서 Decision Tree를 Harr-like Feature와 결합하는 기법을 제안한다. Decision Tree를 사용 함으로서 보다 넓은 분야의 문제를 해결하기 위해 기존의 Decision Tree를 Harr-like Feature에 적합하도록 개선한 HDCT라고 하는 Harr-like Feature를 활용한 Decision Tree를 제안하였으며 이것의 성능을 Adaboost와 비교 평가하였다.

배깅과 부스팅 알고리즘을 이용한 핸드볼 결과 예측 비교 (Comparison of Handball Result Predictions Using Bagging and Boosting Algorithms)

  • 김지응;박종철;김태규;이희화;안지환
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.279-286
    • /
    • 2021
  • 본 연구는 여자핸드볼 경기에서 발생되는 움직임 정보를 바탕으로 앙상블 기법의 배깅과 부스팅 알고리즘의 예측력을 비교하고, 움직임 정보의 활용가능성을 분석하는데 목적이 있다. 연구의 목적을 달성하기 위하여 15번의 연습경기에서 관성센서를 활용해 수집한 움직임 정보를 활용한 경기 결과예측을 랜덤포레스트와 Adaboost 알고리즘을 활용해 비교·분석하였다. 연구결과 첫째, 랜덤포레스트 알고리즘의 예측률은 66.9 ± 0.1%로 나타났으며, Adaboost 알고리즘의 예측률은 65.6 ± 1.6%로 나타났다. 둘째, 랜덤포레스트는 승리 결과는 모두 예측하였고, 패배의 결과는 하나도 예측하지 못하였다. 반면, Adaboost 알고리즘은 승리 예측 91.4%, 패배예측 10.4%라고 나타났다. 셋째, 알고리즘의 적합성 여부에서 랜덤포레스트는 과적합의 오류가 없었지만, Adaboost는 과적합의 오류가 나타났다. 본 연구결과를 바탕으로 스포츠경기를 예측할 때 움직임 정보도 활용 가능성을 확인하였으며, 랜덤포레스트 알고리즘이 보다 우수함을 확인하였다.

특징 추출 알고리즘과 Adaboost를 이용한 이진분류기 (Binary classification by the combination of Adaboost and feature extraction methods)

  • 함승록;곽노준
    • 전자공학회논문지CI
    • /
    • 제49권4호
    • /
    • pp.42-53
    • /
    • 2012
  • 패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.

데이터 분포와 연판정을 이용한 MCT-Adaboost 커널 분류기 (Kernel Classification Using Data Distribution and Soft Decision MCT-Adaboost)

  • 김기상;최형일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권3호
    • /
    • pp.149-154
    • /
    • 2017
  • MCT-Adaboost 학습 알고리즘은 각 학습 단계에서 배경과 객체를 구분하는 가장 좋은 특징을 찾는 학습 알고리즘이다. 각 학습 단계에서는 최적의 특징을 검출하기 위해 학습 데이터에서 각 특징의 각 커널에서 모든 오차율을 산정하고, 각 특징에서 모든 커널들의 합을 하였을 경우 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 이를 선택하고 다음 학습때 영향을 주는 약분류기에서 기존의 MCT-Adaboost 방법은 경판정 방법으로 사용하였다. 이 방법은 특정 커널에서 객체 데이터와 배경 데이터의 오류율이 유사할 경우, 한쪽으로 판정하기 때문에, 제대로 된 결과값을 산정할 수 없는 문제가 있다. 이를 유연하게 하기 위해 본 연구에서는 연판정을 이용한 약분류기 방법을 제안한다. 기존의 MCT-Adaboost는 초기 가중치를 동일하게 산정한다. 하지만, 이는 데이터의 특성을 모른다는 가정하에 설계된 초기 가중치 설정이다. 본 논문에서는 데이터 분포를 이용하여 가중치를 확률적으로 다르게 할당함으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에는 기존의 MCT-Adaboost가 제안하는 성능평가를 통해, 본 연구가 제안하는 방법이 기존 방법에 비해 좋은 결과를 보였다.