• Title/Summary/Keyword: Acyl CoA dehydrogenase

Search Result 43, Processing Time 0.026 seconds

Differential Expression of PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

  • Ji, Shuang;Yang, Runjun;Lu, Chunyan;Qiu, Zhengyan;Yan, Changguo;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of $PPAR{\gamma}$, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that $PPAR{\gamma}$ gene expression was significantly higher in adipose tissue than in LD in both breeds. $PPAR{\gamma}$ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of $PPAR{\gamma}$ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

Inherited metabolic diseases in the urine organic acid analysis of complex febrile seizure patients (복합 열성경련 환자의 소변 유기산 분석에서 나타난 유전대사질환)

  • Cheong, Hee Jeong;Kim, Hye Rim;Lee, Seong Soo;Bae, Eun Joo;Park, Won Il;Lee, Hong Jin;Choi, Hui Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Purpose : Seizure associated with fever may indicate the presence of underlying inherited metabolic diseases. The present study was performed to investigate the presence of underlying metabolic diseases in patients with complex febrile seizures, using analyses of urine organic acids. Method : We retrospectively analyzed and compared the results of urine organic acid analysis with routine laboratory findings in 278 patients referred for complex febrile seizure. Results : Of 278 patients, 132 had no abnormal laboratory findings, and 146 patients had at least one of the following abnormal laboratory findings: acidosis (n=58), hyperammonemia (n=55), hypoglycemia (n=21), ketosis (n=12). Twenty-six (19.7 %) of the 132 patients with no abnormal findings and 104 (71.2%) of the 146 patients with statistically significant abnormalities showed abnormalities on the organic acid analysis (P<0.05). Mitochondrial respiratory chain disorders (n=23) were the most common diseases found in the normal routine laboratory group, followed by PDH deficiency (n=2) and ketolytic defect (n=1). In the abnormal routine laboratory group, mitochondrial respiratory chain disorder (n=29) was the most common disease, followed by ketolytic defects (n=27), PDH deficiency (n=9), glutaric aciduria type II (n=9), 3-methylglutaconic aciduria type III (n=6), biotinidase deficiency (n=5), propionic acidemia (n=4), methylmalonic acidemia (n=2), 3-hydroxyisobutyric aciduria (n=2), orotic aciduria (n=2), fatty acid oxidation disorders (n=2), 2-methylbranched chain acyl CoA dehydrogenase deficiency (n=2), 3-methylglutaconic aciduria type I (n=1), maple syrup urine disease (n=1), isovaleric acidemia (n=1), HMG-CoA lyase deficiency (n=1), L-2-hydroxyglutaric aciduria (n=1), and pyruvate carboxylase deficiency (n=1). Conclusion : These findings suggest that urine organic acid analysis should be performed in all patients with complex febrile seizure and other risk factors for early detection of inherited metabolic diseases.

Investigation of False Positive Rates Newborn Screening using Tandem Mass Spectrometry (TMS) Technology in Single Center (단일기관에서 이중 질량 분석법(tandem mass spectrometry technology)을 이용한 선천성 대사이상 검사의 위양성율에 대한 연구)

  • Kim, Hyunsoo;Shin, Son Moon;Ko, Sun Young;Lee, Yeon Kyung;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Objective: Newborn screening leads to improved treatment and disease outcomes, but false-positive newborn screening results may impact include parental stress and anxiety, perception of child as unhealthy, parent-child relationship dysfunction, and increased infant hospitalizations. The purpose of this study was to investigate of the false positive rates and the causative factors of false positive results in Tandem Mass Spectrometry (TMS) in single center. Methods: Records were reviewed for all 18,872 subjects who were born in Cheill General Hospital, during January 1st, 2012 to December 31st, 2014. 17,292 neonates (91.62%) were tested for tandem mass screening almost in 2-5th day of life. Newborn babies whose first results were abnormal had been tested repeatedly by same methods in 7-14 day. If the results were abnormal again, further evaluation was performed. TMS analysis included data for the 43 disorders screened for using TMS broken down into three categories: fatty acid oxidation disorders, organic acidurias, and aminoacidopathies. The impact of several factors on increased false positive rates was analyzed using a multivariate analysis: time from birth to sample collection, birth weight, birth height, BMI, gender, gestational age, delivery type. Results: Males of the subjects were 8942 (51.7%), female 8350 (48.3%), the mean gestational age was $38.6{\pm}1.7$ weeks, the average birth weight $3,155.6{\pm}502.4g$, the average birth height $49.1{\pm}2.9cm$, and the average BMI $13.0{\pm}3.8(kg/m^2)$. Vaginal delivery cases were 9713 (56.2%), caesarean section 7,579 (43.8%). The average date of the inspection was $2.8{\pm}1.1$ days. 224 cases were identified as TMS positive. All the subjects were false positive (222/17,292, 1.30%) except 2 cases (1 male; benign phenylketonuria and 1 female; Short chain acyl-CoA dehydrogenase deficiency). The false positive rates were 0.61% in fatty acid oxidation disorders, 0.25% in organic acidurias, and 0.45% in aminoacidopathies. In our study, the date of inspection got late, the false positive rates got higher. Because almost the cases of late test date were in treatment in neonatal intensive care unit so their test date was affected by their medical conditions. False positive rate was higher in extreme immaturity${\leq}27$ weeks than newborns of gestational age >27 weeks [OR=6.957 (CI=1.273-38.008), p<0.025] and extremely low birth weight<1,000 g than newborns of birthweight ${\geq}1,000g$ [OR=5.616 (CI=1.134-27.820), p<0.035]. Conclusion: False positive rate of TMS was 1.30% in Cheil General Hospital. Lower gestational age and birth weight impacted on increased false positive rates. Better understanding of factors that influence the reporting of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting. of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting.

  • PDF