• Title/Summary/Keyword: Actuator switching

Search Result 68, Processing Time 0.025 seconds

Finite Element analysis of Magnetic Actuators with permanent magnet (영구자석을 갖는 마그네틱 액추에이터의 유한요소 해석)

  • Park, Jeong-Hong;Seo, Jeong-Ho;Joo, Su-Won;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.857-859
    • /
    • 2002
  • This paper describes an analysis of Magnetic actuator with permanent magnet using 2-D axisymmetric finite element method. Magnetic actuator is the machine to change electrical signal into mechanical signal, and fast switching device to be used for breaker and automation field etc. This magnetic actuator considered action for armature distance, external circuit, and nonlinear material characteristic and current. Also, comparative analysis is performed for 2 coil type and 1 coil type by coil type of actuator, then characteristic is grasped. It is Combined with external circuit for analyzing transient characteristic by variable time. According to the results, we analyzed action characteristic of Magnetic actuator.

  • PDF

Design and Analysis of an Inchworm Actuator with Electromagnetic Switching (자속경로 스위칭에 의한 인치웜 액츄에이터의 설계 및 해석)

  • Jung, Jae-Sung;Min, Hyun-Jin;Kim, Sang-Chae;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.843-848
    • /
    • 2000
  • In general, inchworm actuators are composed of two clamping piezoelectric elements and one expansion piezoelectric element. In this paper, two electromagnetic clampers are used for higher speed and high load. Dynamic equation is derived to simulate the behavior of the inchworm actuator with electromagnets. Electromagnetic clamper is used to improve the performance of the inchworm actuator. The electromagnetic clamper is composed of two permanent magnets and one traditional electromagnet. The permanent magnets play the role of the source of magnetic field to make clamping force higher, and the electromagnet is to change the mode between clamping and free. The driving voltage profile is also analyzed to improve the speed of inchworm actuator. The real system was manufactured and experimented to find dynamic characteristics and the maximum speed is obtained. Dynamic model is verified by comparing with experimental results.

  • PDF

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

Force Control of Hybrid Actuator using Learning Vector Quantization Neural Network

  • Ahn, Kyoung-Kwan;Thai Chau, Nguyen Huynh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.290-295
    • /
    • 2005
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

  • PDF

High accuracy position control of pneumatic rodless cylinder using LVQNN (LVQNN을 이용한 공압 로드리스 실린더의 고정도 위치제어)

  • 표성만;정민화;안경관;이병룡;양순용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1012-1017
    • /
    • 2003
  • The development of a fast, accurate, and inexpensive position-controlled pneumatic actuator that may be applied to a variety of practical positioning applications with various external loads is described in this paper. A novel modified pulso width modulation (MPWM) valve pulsing algorithm allows on/off solenoid valves to be used in place of costly servo valves. A comparison between the system response of standard PWM technique and that of the novel modified PWM technique shows that the control performance is significantly increased. A state feedback controller with position, velocity and acceleration feedback is successfully implemented as the continuous controller. Switching algorithm of control parameter using learning vector quantization neural network (LVQNN) is newly proposed. which estimates the external loads of the pneumatic actuator. The effectiveness of the proposed control algorithms are demonstrated through experiments with various loads.

  • PDF

A Robust Controller Design for Robot Manipulators with Hydraulic Actuator Dynamics (유압구동기를 채용한 로봇 매니플레이터에 대한 강인제어기 설계)

  • Park, Gwang-Seok;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.598-600
    • /
    • 1998
  • In this paper, a robust controller is proposed to achieve the accurate tracking for uncertain robot manipulators with hydraulic actuator dynamics. The parameter uncertainty can be quantified by the linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is proposed using the boundary layer technique around the sliding surface. It is shown that the smoothing controller guarantees the uniform ultimate boundedness of the tracking, error. The proposed controller shows good better tracking performance.

  • PDF

Design and fabrication of a Micromechanical Switch Using Polysilicon Surface Micromachining (다결정실리콘 표면 미세가공 기술을 이용한 초소형 기계식 스위치의 설계 및 제작)

  • Chae, Gyeong-Su;Han, Seung-O;Ha, Jong-Min;Mun, Seong-Uk;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.546-551
    • /
    • 2000
  • A micromechanical switch that can be used as a logic gate is described in this paper. This switch consists of fixed input electrodes an output electrode Vcc/GND electrodes and movable plates suspended by crab-leg flexures. for mechanical switching of an electrical signal a parallel plate actuator which comes in contact with output electrode was used. Provided that movable plates are connected to Vcc and a low input voltage(ground signal) is applied to the fixed input electrodes the movable plates are pulled by an electrostatic force between the fixed input electrodes and the movable plates. the proposed micromechanical switch was fabricated by surface micromachining technology with$2\mum$ -thick poly-Si and the measured threshold voltage for ON/OFF switching was 23.5V.

  • PDF

Dynamic Characteristic of Permanent Magnetic Actuator (영구자석형 액추에이터의 동작 특성)

  • Seo, J.H.;Kim, H.K.;Joo, S.W.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.24-26
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones.

  • PDF

Analysis of Dynamic characteristic and design of permanent magnetic actuator (영구자석형 차단기의 특성해석 및 설계)

  • Seo J. H.;Kim H. K.;Joo S. W.;Hahn S. C.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1040-1042
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones

  • PDF

Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake (MR Brake를 이용한 공압근육매니퓰레이터의 지능제어)

  • Ahn, Kyoung-Kwan;Thanh, T.D.C.;Ahn, Young-Kong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF