• Title/Summary/Keyword: Actual network

Search Result 1,366, Processing Time 0.032 seconds

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

Hybrid Intelligent Control for Speed Sensorless of SPMSM Drive (SPMSM 드라이브의 속도 센서리스를 위한 하이브리드 지능제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.690-696
    • /
    • 2004
  • This paper is proposed a hybrid intelligent controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neural network-fuzzy(NNF) control and speed estimation using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Control of Left Ventricular Assist Device Using Neural Network Feedforward Controller (인공신경망 Feedforward 제어기를 이용한 좌심실 보조장치의 제어실험)

  • 정성택;김훈모;김상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.

  • PDF

Implementation of Network Level Simulator for Tactical Network Performance Analysis (전술통신망 성능분석을 위한 네트워크 시뮬레이터 구현)

  • Choi, Jeong-In;Shin, Sang-Heon;Baek, Hae-Hyeon;Park, Min-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-674
    • /
    • 2013
  • This paper studied about the design and implementation of tactical communication network simulator in order to obtain tactical communication network parameter, such as link capacity and routing plan, and a number of exceptional cases that may occur during actual deployment by conducting simulation of a large-scale tactical communication networks. This tactical communication network simulator provides equipment models and link models of commercial OPNET simulator for tactical communication network. In addition, 6 types of simulation scenario writings convenience functions and traffic generation models that may occur in situations of tactical communication network environment were implemented in order to enhance user friendliness. By taking advantages of SITL(System-In-The-Loop) function of OPNET, the tactical communication network simulator allows users to perform interoperability test between M&S models and actual equipment in operating simulation of tactical communication network, which is run on software. In order to confirm the functions and performance of the simulator, small-scale of tactical communication network was configured to make sure interoperability between SITL-based equipment and a large-scale tactical communication network was simulated and checked how to cope with traffic generated for each network node. As the results, we were able to confirm that the simulator is operated properly.

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

Evaluation of the Representativeness of Air Quality Monitoring Network in Seoul through Actual Measurement (대기오염도 실측에 의한 대기오염 자동측정망의 대표성 평가)

  • Jeon, Eui-Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 1996
  • Simultaneous monitoring in many locations is necessary to evaluate the air quality and analyze future trend of a city, For this purpose, it is essential to install air pollution monitoring network. The first automatic air pollution monitoring network was introduced Seoul in 1973. As of 1995, 20 monitoring stations are now in operation. Concerning the management of the air pollution monitoring network, there was some argument among the relavant scholars, non-governmental organization(NGO) and the government organization. So far, there was no extensive evaluation and analysis about the network. The purpose of this study was to evaluate the representativeness of air quality monitoring network through actual measurement of the concentration of the air pollutant. The concentration of NOx was extensively measured widely in Seoul area three times using the TEA simple measuring technique. Even the judgement level for the area representativeness was lowered to 80%, Ssangmun-dong monitoring station tend to overestimate the pollutant concentration of the covered area. While, Sinlimdong monitoring station tend to underestimate the pollutant concentration of the covered area.

  • PDF

Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller (퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어)

  • 이홍균;이정철;김종관;정동화
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Automatic adjustment of feedforward signal in boiler controllers of thermal power plants

  • Egashira, Katsuya;Nakamura, Masatoshi;Eki, Yurio;Nomura, Masahide
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.83-86
    • /
    • 1995
  • This paper proposes an auto-tuning method of feedforward signal in boiler control of thermal power plants by using the neural network. The neural network produces an optimal feedforward signal by tuning the weights of the network. The weights are adapted effectively by using the teaching signal of PI control output. The proposed method was evaluated based on a detailed simulator which expressed non-linear characteristics of the 600 MW actual thermal power plant at load chaning operations, showed effectiveness in the learning of the weights of the neural network, and gave an accurate control performance in the temperature control of the system. Through the evaluation, the proposed method was proved to be effectively applicable to the actual thermal plants as the automatic adjustment tool.

  • PDF

A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms (지능알고리즘에 의한 정수장 약품주입제어에 관한 연구)

  • 김용열;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.