• Title/Summary/Keyword: Actual evapotranspiration

Search Result 107, Processing Time 0.033 seconds

Regional Scale Evapotranspiration Mapping using Landsat 7 ETM+ Land Surface Temperature and NDVI Space (Landsat ETM+영상의 지표면온도와 NDVI 공간을 이용한 광역 증발산량의 도면화)

  • Na, Sang-Il;Park, Jong-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.115-123
    • /
    • 2008
  • Evapotranspiration mapping using both meteorological ground-based measurements and satellite-derived information has been widely studied during the last few decades and various methods have been developed for this purpose. It is significant and necessary to estimate regional evapotranspiration (ET) distribution in the hydrology and water resource research. The study focused on analyzing the surface ET of Chungbuk region using Landsat 7 ETM imagery. For this process, we estimated the regional daily evapotranspiration on May 8, 2000. The estimation of surface evapotranspiration is based on the relationship between Temperature Vegetation Dryness Index (TVDI) and Morton's actual ET. TVDI is the relational expression between Normalized Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST). The distribution of NDVI corresponds well with that of land-use/land cover in Chungbuk. The LST of several part of city in Chungbuk region is higher in comparison with the averaged LST. And TVDI corresponds too well with that of land cover/land use in Chungbuk region. The low evapotranspiration availability is distinguished over the large city like Cheongju-si, Chungju-si and the difference of evapotranspiration availability on forest and paddy is high.

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

Climatic Water Balance Analysis using NOAA/AVHRR Satellite Images

  • KWON Hyung J.;KIM Seong J.;SHIN Sha C.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.7-9
    • /
    • 2004
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR. Quantifying water balance components is important to understand the basic hydrology. In this study, a simple method to estimate the ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data. The Morton's actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map. The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

  • PDF

Probable Evapotranspiration of Paddy Rice using Dry Day Index

  • 장하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.72-78
    • /
    • 1995
  • To support some knowledge in planning irrigation system, short or long-term irrigation scheduling or determining irrigation reservoir capacity, it is necessary to estimate peak irrigation requirements and seasonal distribution of water demands for various return periods. In this paper Dry Day Index and Probable Evapotranspiration were evaluated to decide seasonal consumptive use of paddy rice for a design year using several decades' daily rainfall data and 5 years'('82~'86) actual evapotranspiration data, respectively. To obtain Dry Day Index that is defined as the number of probable dry days for a given period, Slade unsymmetrical distribution function was adopted. Dry Day Index was analysed for 5 and 10-day intervals. Each of them was evaluated with return periods of 1, 3, 5, 10 and 20 year. Their singnificance was tested by X$^2$ method. Based on these values, the Probable Evaportanspiration, that is the average daily ET both in dry days and rainy days during a given period, was estimated. Crop coefficient was also determined by the modified Penman equation proposed by Doorenbos & Pruitt.

  • PDF

Altitudinal Pattern of Evapotranspiration and Water Need for Upland Crops in Jeju Island (제주도 지역의 고도에 따른 증발산량 및 용수량 특성 평가)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.915-923
    • /
    • 2015
  • A method of estimating irrigation water need based on water balance and net water consumption concept is proposed, and applied to four watersheds in order to assess the regional and altitudinal characteristics of evapotranspiration and water need for upland crops in Jeju Island. Potential and actual evapotranspiration, and net water need were calculated during the period 1992 to 2013 using SWAT-K watershed model. The annual potential evapotranspiration decreased linearly with increasing elevation, while actual evapotranspiration showed increase with elevation to 400 m around and gradual decrease at higher elevation due to vegetation species, water availability, and cold limitation. Altitudinal pattern of net water need showed linear decrease with increasing elevation for three watersheds (Han-cheon, Cheonmi-cheon, and Oedo-cheon), and annual values of net water need for upland areas (below 200 m in elevation) were 559~680mm/yr. The comparison between actual pumping rate from wells and net water need for irrigation area showed that the amount of pumping water significantly increased during summer season (June to August), while net water need for crop cultivation relatively decreased during this period. To ensure these results, more water use data from pumping wells and additional watersheds should be investigated in the next study.

Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins (다목적댐유역에서의 증발산 보완관계가설 검증)

  • Kim, Jihoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.549-559
    • /
    • 2017
  • The complementary relationship hypothesis for areal evapotranspirations was validated in the regional-scale area of multipurpose dam basins in Korea and the long-term water balances were indirectly identified. Annual actual evapotranspiration ($ET_A$) was assumed the difference between total annual precipitation and total annual inflow and the available moisture was assumed the total precipitation. The seasonally varying pan coefficient (kp) is estimated as the ratio of the $ET_{pan}$ and the evapotranspiration calculated by FAO Penman-Monteith equation ($ET_{PM}$). The complementary relationships using ground observation data of $ET_P$ and $ET_A$ in the multipurpose dam basins follow generally the typical pattern that $ET_P$ and $ET_A$ is complementary and converges to equivalent evapotranspiration ($ET_W$) under the extreme wet environment. However, $ET_A$ of Juam dam was estimated relatively greater than other basins and exceeds even $ET_P$ at certain range with high moisture availability, which can be understood as the results of possible over-estimation of precipitation or under-estimation of dam inflow. It is expected that the use of evapotranspiration complementary relationship for validating hydrological water balances will contribute to controlling uncertainties in estimating dam inflows during flood season in particular.

Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area (해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

Evapotranspiration and Water Balance in the Basin of Nakdong River (낙동강유역의 증발산량과 물수지)

  • 조희구;이태영
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

Impact of Climate Change on Variation of the Aridity and Evaporative Indexes in South Korea

  • Ha, Doan Thi Thu;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.146-146
    • /
    • 2019
  • The aridity index, which is determined as the ratio of potential evapotranspiration to precipitation, is one of key parameters in drought characterization. Whereas the evaporative index, which is defined as the ratio of actual evapotranspiration to precipitation, represents the fraction of available water consumed by the evapotranspiration process. This study investigates variation of the aridity and evaporative indexes due to climate change during the 21st century in South Korea. Estimations of the aridity and evaporative indexes are obtained using SWAT mode based on ensemble of 13 different GCMs over 5 large basins of South Korea for 2 RCP scenarios (RCP 4.5 and RCP 8.5). The results shows the opposite trends of the two indexes, where the aridity index is projected as always increase, while the evaporative index is expected to decrease in all of 3 future period (2011-1940, 1941-1970, 1971-2099). The estimated results also suggest that land cover influenced significantly evapotranspiration along with the change of climate. The study indicates that South Korea will be facing with a high risk of water scarcity in future due to climate change, which is seriously challenging for water planing and management in the country.

  • PDF

Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia (아시아 Fluxnet 자료를 활용한 보완관계 기반 증발산량 추정)

  • Seo, Hocheol;Kim, Jeongbin;Park, Hyesun;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.303-310
    • /
    • 2017
  • Evapotranspiration is a significant hydrologic quantity for understanding the amount of available water resource evaluation, water balance analysis, water circulation and energy circulation. Various methods have been developed for estimating the evapotranspiration using data observed at meteorological observatories. Especially, the focus of methods has been on the complementary relationship that the actual evapotranspiration is equal to the difference between the twice of evapotranspiration in the wet condition and the potential evapotranspiration. The Granger and Gary (GG) method is an empirical formula that can be used to estimate the evapotranspiration using only empirical parameters based on the complementary relationship and using only the net radiation and temperature of the region. In this study, we compared the evapotranspiration data observed at 10 sites in Asia within the dataset of FLUXNET2015, with the evapotranspiration calculated by GG method. The evapotranspiration in inland area was estimated more accurately than that of coastal area. Simulated Annealing (SA) was used for the coastal area to modify the parameters. Using the modified GG method, we could improve the statistics such as root mean square error, the coefficient of determination ($R^2$), and the mean absolute ${\mid}BIAS{\mid}$ of the evapotranspiration estimation in coastal area.