• 제목/요약/키워드: Actual Evapotranspiration

검색결과 107건 처리시간 0.032초

Landsat ETM+영상의 지표면온도와 NDVI 공간을 이용한 광역 증발산량의 도면화 (Regional Scale Evapotranspiration Mapping using Landsat 7 ETM+ Land Surface Temperature and NDVI Space)

  • 나상일;박종화
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.115-123
    • /
    • 2008
  • Evapotranspiration mapping using both meteorological ground-based measurements and satellite-derived information has been widely studied during the last few decades and various methods have been developed for this purpose. It is significant and necessary to estimate regional evapotranspiration (ET) distribution in the hydrology and water resource research. The study focused on analyzing the surface ET of Chungbuk region using Landsat 7 ETM imagery. For this process, we estimated the regional daily evapotranspiration on May 8, 2000. The estimation of surface evapotranspiration is based on the relationship between Temperature Vegetation Dryness Index (TVDI) and Morton's actual ET. TVDI is the relational expression between Normalized Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST). The distribution of NDVI corresponds well with that of land-use/land cover in Chungbuk. The LST of several part of city in Chungbuk region is higher in comparison with the averaged LST. And TVDI corresponds too well with that of land cover/land use in Chungbuk region. The low evapotranspiration availability is distinguished over the large city like Cheongju-si, Chungju-si and the difference of evapotranspiration availability on forest and paddy is high.

신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용- (Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm-)

  • 이남호;정하우
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

Climatic Water Balance Analysis using NOAA/AVHRR Satellite Images

  • KWON Hyung J.;KIM Seong J.;SHIN Sha C.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.7-9
    • /
    • 2004
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR. Quantifying water balance components is important to understand the basic hydrology. In this study, a simple method to estimate the ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data. The Morton's actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map. The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

  • PDF

Probable Evapotranspiration of Paddy Rice using Dry Day Index

  • 장하우;김성준
    • 한국농공학회지
    • /
    • 제37권E호
    • /
    • pp.72-78
    • /
    • 1995
  • To support some knowledge in planning irrigation system, short or long-term irrigation scheduling or determining irrigation reservoir capacity, it is necessary to estimate peak irrigation requirements and seasonal distribution of water demands for various return periods. In this paper Dry Day Index and Probable Evapotranspiration were evaluated to decide seasonal consumptive use of paddy rice for a design year using several decades' daily rainfall data and 5 years'('82~'86) actual evapotranspiration data, respectively. To obtain Dry Day Index that is defined as the number of probable dry days for a given period, Slade unsymmetrical distribution function was adopted. Dry Day Index was analysed for 5 and 10-day intervals. Each of them was evaluated with return periods of 1, 3, 5, 10 and 20 year. Their singnificance was tested by X$^2$ method. Based on these values, the Probable Evaportanspiration, that is the average daily ET both in dry days and rainy days during a given period, was estimated. Crop coefficient was also determined by the modified Penman equation proposed by Doorenbos & Pruitt.

  • PDF

제주도 지역의 고도에 따른 증발산량 및 용수량 특성 평가 (Altitudinal Pattern of Evapotranspiration and Water Need for Upland Crops in Jeju Island)

  • 김철겸;김남원
    • 한국수자원학회논문집
    • /
    • 제48권11호
    • /
    • pp.915-923
    • /
    • 2015
  • 본 연구에서는 유역 물수지 방법을 기반으로 제주도 지역에 적합한 용수량 산정방법을 제안하고, 이를 기반으로 4개 하천유역에 대해 지역 및 고도에 따른 증발산량, 용수량 특성을 평가하였다. SWAT-K 유역모형을 적용하여 1992~2013년 기간에 대해 잠재증발산량과 실제증발산량을 산정하고, 이로부터 유역의 순물소모량을 추정하였다. 고도증가에 따라 잠재증발산량은 선형으로 감소하는 반면, 실제증발산량은 강수량에 의한 토양내 가용수분의 증가로 인해 약 400m 고도까지는 증가하다가 이후 고도에서는 식생, 가용수분의 감소, 저온현상 등으로 인해 감소하는 것으로 나타났다. 고도에 따른 순물소모량은 강정천유역을 제외한 3개 유역에서 고도증가에 따라 순물소모량이 선형적으로 감소하는 것으로 나타났으며, 고도 200m 이하 작물경작지에서의 순물소모량은 연간 559~680m로 분석되었다. 추정된 용수량을 실제 관정 이용량과 비교한 결과, 여름철(6~8월) 양수량은 급수관행으로 인해 크게 증가하는데 비해, 작물경작에 따른 순물소모량은 오히려 감소하는 것으로 나타났다. 이에 대해서는 향후 더 많은 관정 이용량과 추가적인 대상지역을 반영하여 분석이 필요할 것으로 판단된다.

다목적댐유역에서의 증발산 보완관계가설 검증 (Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins)

  • 김지훈;강부식;김진겸
    • 대한토목학회논문집
    • /
    • 제37권3호
    • /
    • pp.549-559
    • /
    • 2017
  • 잠재증발산($ET_P$)과 실제증발산($ET_A$) 사이의 보완관계 가설을 국내 다목적댐 유역에 적용하여, 각 유역의 기상 수문 관측자료를 기반으로 잠재 및 실제 증발산사이의 보완관계 성립을 검증하고자 하였다. 연단위 실제증발량($ET_A$)은 총강수량과 총유출량의 차이로서 간접추정하였으며, 가용수분량은 연강수량으로 대체하여 사용하였다. 이때, 팬증발량 보정에 사용된 팬계수(kp)는 홍수기 및 비홍수기로 구분하여 $ET_{pan}$과 FAO Penman-Monteith 식으로 계산된 증발량($ET_{PM}$)의 비를 통해 산정하였다. 각 다목적댐 유역에서 관측자료 기반의 독립적으로 계산된 $ET_P$$ET_A$를 통해 보완관계를 산정한 결과, 대부분의 유역에서 가용수분량이 증가할수록 $ET_P$는 감소함과 동시에 $ET_A$는 증가하는 일반적인 보완관계의 패턴을 잘 보였고, 강수량의 증가에 따라 평형증발산량($ET_W$)의 수렴을 확인할 수 있었다. 하지만, 주암댐의 경우 $ET_A$가 다른 댐 유역에 비해 크게 산정되어 가용수분량이 큰 구간에서 $ET_P$를 초과하는 경우도 발생하였다. 이는 주암댐 유역의 강수량의 과다산정 혹은 유입량의 과소산정의 가능성을 보여주는 결과로 해석될 수 있다. 증발산 보완관계를 수문학적 물수지검증을 위한 기준으로 활용한다면 홍수기 다목적댐 유입량 산정의 불확실성을 제어하는데 도움이 될 것으로 기대한다.

해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성 (Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area)

  • 양성일;강동환;권병혁;김병우
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

낙동강유역의 증발산량과 물수지 (Evapotranspiration and Water Balance in the Basin of Nakdong River)

  • 조희구;이태영
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

Impact of Climate Change on Variation of the Aridity and Evaporative Indexes in South Korea

  • Ha, Doan Thi Thu;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.146-146
    • /
    • 2019
  • The aridity index, which is determined as the ratio of potential evapotranspiration to precipitation, is one of key parameters in drought characterization. Whereas the evaporative index, which is defined as the ratio of actual evapotranspiration to precipitation, represents the fraction of available water consumed by the evapotranspiration process. This study investigates variation of the aridity and evaporative indexes due to climate change during the 21st century in South Korea. Estimations of the aridity and evaporative indexes are obtained using SWAT mode based on ensemble of 13 different GCMs over 5 large basins of South Korea for 2 RCP scenarios (RCP 4.5 and RCP 8.5). The results shows the opposite trends of the two indexes, where the aridity index is projected as always increase, while the evaporative index is expected to decrease in all of 3 future period (2011-1940, 1941-1970, 1971-2099). The estimated results also suggest that land cover influenced significantly evapotranspiration along with the change of climate. The study indicates that South Korea will be facing with a high risk of water scarcity in future due to climate change, which is seriously challenging for water planing and management in the country.

  • PDF

아시아 Fluxnet 자료를 활용한 보완관계 기반 증발산량 추정 (Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia)

  • 서호철;김정빈;박혜선;김연주
    • 대한토목학회논문집
    • /
    • 제37권2호
    • /
    • pp.303-310
    • /
    • 2017
  • 증발산량은 수자원 부존량 평가, 물수지 분석, 지구의 물 순환 및 에너지 순환을 이해하기 위해서 알아야 할 중요한 수문량이다. 실제 증발산량이 습윤조건의 증발산량의 2배에서 잠재 증발산량을 제한 것과 같다는 보완관계(Complimentary relationship)를 기반으로 기상관측망 지점에서 일반적으로 관측되는 기상 자료를 이용해 증발산량을 산정하는 방법이 다양하게 개발되어 왔다. 이 중 Granger and Gary (GG)방법은 보완관계를 기반으로 경험적인 매개변수를 도입하여, 지역의 기온 등의 자료만 활용하여 증발산량을 산정할 수 있도록 하는 경험식이다. 본 연구에서는 FLUXNET2015 자료 중 아시아 지역 내의 10개 지점에서 에디공분산법을 활용해서 관측된 증발산량 자료를 GG방법을 활용하여 산정한 증발산량과 비교하였다. 내륙지역의 경우 해안지역에 비해 상대적으로 정확하게 증발산량이 추정되었고, 이에 해안지역의 경우에만 담금질 기법(Simulated Annealing, SA)을 활용하여 GG방법의 매개변수를 수정하였다. 수정된 GG방법을 활용하여 증발산량 추정 결과의 Root mean square error, Coefficient of determination($R^2$), Mean absolute BIAS를 개선할 수 있었다.