• Title/Summary/Keyword: Activity Form

Search Result 2,234, Processing Time 0.059 seconds

Inactive but Dimeric Form of Lipoprotein Lipase in Human Plasma

  • Park, Byung-Hyun
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.329-333
    • /
    • 2001
  • Active lipoprotein lipase (LPL) is known as a noncovalent homodimer of identical subunits, and dissociation of the dimer to a monomeric form renders the lipase inactive. In this study, the oligomerization status of LPL in human and rat plasma was investigated. The LPL activity was barely detectable in the control rat and human plasma. After the injection of heparin, the total lipolytic activity of plasma was rapidly increased, and reached its maximum in 30 min. Changes of the LPL protein correlated well with those of lipolytic activity. The LPL protein that is released by heparin into both human and rat plasma was active and dimeric in the sucrose density gradient ultracentrifugation. In control rat plasma, LPL was inactive, and a great fraction was present as an aggregate. However, the inactive LPL protein in the control human plasma retained the dimeric state, indicating that dimerization can be an entity independent of the catalytic activity of LPL. The released LPL is transported as a complex with lipoproteins in plasma. Lipoprotein profiles, determined by NaBr ultracentrifugation, exhibited typical LDL- and HDL-mammal patterns in humans and rats, respectively, with a smaller amount of the LDL fraction observed in rats. The difference in the lipoprotein profiles might influence the fate of the released LPL in plasma.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • Yu, Myeong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of a 1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of a 1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of a 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these Proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of ${\alpha}$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of ${\alpha}$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of e 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo;Kang, Bong-Seok;Kim, Dong-Soo;Kim, Yong-Tae;Kim, Se-Kwon;Chung, Kang-Hyun;Kim, Jume-Ki;Nam, Kyung-Soo;Lee, Young-Choon;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.

  • PDF

Antifungal Metabolisms of Streptomyces rimosus against Sapstain and Mold Fungi(I) -Antifungal Efficacy of Secondary Metabolites- (목재변색균(木材變色菌) 및 표면오염균류(表面汚染菌類)에 대(對)한 Streptomyces rimosus의 항균대사(抗菌代謝) (I) -2차(次) 대사물질(代謝物質)의 항균효능(抗菌效能)-)

  • Kang, Kyu-Young;Lee, Dong-Heub;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.42-48
    • /
    • 1995
  • The purpose of this study is to evaluate the efficacy of metabolites produced form Streptomyces rimosus in controlling the growth of sapwood - inhabiting fungi. In order to carry out this task, the following specific fungi were tested : sapstain fungi - Ceratocystis pilifera, Ceratocystis piceae, and Aureobasidium pullulans ; mold fungi - Trichoderma hazianum, Trichoderma viride, Penicillium cirtrinum, and Aspergillus niger. Based on the tests, the following observations can be drawn. 1. The conidial germination of sapstain and mold fungi was completely inhibited leaving a clear zone around the paper disc treated with metabolites. The best inhibition was observed in A. pullulans plate and the least in T. viride. 2. Concentration of SB medium for the production of metabolites from St, rimosus affected antifungal activity of metabolites against sapwood - inhabiting fungi. Metabolites prepared from 1/3${\times}$SB medium showed the best activity and the least activity was observed in metabolites form 1/4${\times}$medium. 3. in vivo and in vitro test using wood blocks, treatment of pine sapwood blocks with metabolites also inhibited conidial germination and thus prevented discoloration. 4. Treatment with metabolites did not change the macroscopic structure of wood and did not cause the discoloration of the surface of wood by pigments produced form St. rimosus. In conclusion the results of this study indicate that antifungal metabloites of St, rimosus could be used for the biological control of sapstain and mold fungi.

  • PDF

Study on the Significance and Application of the whole Body-form Diagnosis (전신형태 진단의 의의와 활용에 대한 연구)

  • Kim Gyeang Cheol;Shin Soon Shik;Lee Yang Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.873-880
    • /
    • 2002
  • We study on the significance and application of the whole body form diagnosis. The results were as follows; The general form diagnosis is the method to observe the individual physiology and pathology. The phase of thinking, the current and activity of KI, the pattern of general form diagnosis have organic relations with the symptoms. The general form diagnosis is made up the principle of the imaging phase, therefore it must make synthetic union the differentiation of syndromes. The general form diagnosis of NAE GYEONG shows the typical phases and it is divided with the sight of YIN YANG and Five-Element. The general form diagnosis of SEOP GAE is practiced the theory of constitution's demonstration before the understanding of symptoms. Then JANG NAM tried the type of constitution's demonstration. The general form diagnosis of DONG MU becomes the diagnostic root of constitution's demonstration in four type constitution theory.

Efficient Production of Glucose Isomerase from Atrhrobacter sp. L-3 (Arthrobacoer sp. L-3가 생성하는 Glucose Isomerase의 최적 생성조건)

  • 이은숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.1
    • /
    • pp.29-33
    • /
    • 1997
  • The efficient production of glucose isomerase (G. I0.) produced form Arthrobacter sp. L-3 was studied. The optimum culture time of the enzyme was 40hr. The maximum enzyme activity was found at glucose concentration 1%. G. I. activity did not affect inoculum size. The glucose isomerase activity was strongly influenced by the addition of glucose.

  • PDF

Phenolic acid composition and antioxidative activity of white ginseng (Panax ginseng, C. A. Meyer) (백삼의 페놀산 조성과 항산화 활성)

  • Choi, Chang-Suk;Kim, Kyung-Im;Hong, Hee-Do;Choi, Sang-Yoon;Lee, Young-Chul;Kim, Kyung-Tack;Rho, Jeong-Hae;Kim, Sung-Soo;Kim, Young-Chan
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.22-30
    • /
    • 2006
  • Phenolic acids of white ginseng were extracted and fractionated into free, esterified, and insoluble-bound forms. The contents of individual phenolic acids in different forms were quantified by gas liquid chromatography. Nine different phenolic acids as free, esterified, and insoluble-bound forms were identified in white ginseng. Total phenolic compounds in different forms of extracts was 0.309% (free form), 0.230% (esterified form) and 0.138% (insoluble-bound form), respectively. Total phenolic acid contents in free, esterified and insoluble-bound form were 889.3, 356.8, 1,176.9 mg/100g fraction, respectively. Ferulic acid was the predominant phenolic acid, representing 63.7% and 50.9% of total phenolic acids in esterified fom and insoluble-bound form, respectively. While caffeic acid was only detected in esterified form. At 10 mg/ml insoluble-bound form quenched 95.9% ABTS free radicals generated from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH). Also, electron donating ability and lipid peroxidation inhibitory activity of insoluble-bound fom were higher than other fraction. All phenolic acid fractions scavenged over 80% of hydroxyl radical at 10 mg/ml.

Detection of Zymogenic ChsC Activity in Vegetative Hyphae of Aspergillus nidulans. (Aspergillus nidulans 영양균사에서 효소전구체형 ChsC 활성의 검출)

  • 박범찬;박윤희;박희문
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.178-182
    • /
    • 2004
  • In the vegetative hyphae of Aspergillus nidulans, a zymogenic form of the class I chitin synthase activity was successfully measured by the assay condition for Saccharomyces cerevisiae class I chitin synthase, Chsl. The class I chitin synthase activity of the A. nidulans chsC wild type strain was increased about six-fold by trypsin-pretreatment, but that of the chsC disruption strain revealed no increase. Interestingly enough, level of the class I chitin synthase activity of the chsC disruption strain was almost the same as that of the chsC wild type without trypsin-pretreatment. These results indicated that the A. nidulans ChsC activity could be measured by account-ing the class I chitin synthase activity without the trypsin-pretreatment as an internal control. Consistence to the expression pattern of the chsC revealed by northern blot analysis, the activity of ChsC was increased upon reaching the culture time for acquiring developmental competence. Our results shown here also supported the previous report suggesting the possible involvement of ChsC in vegetative hyphal growth of A. nidulans.