• 제목/요약/키워드: Active tire pressure control

검색결과 7건 처리시간 0.021초

타이어 시뮬레이터를 이용한 능동형 타이어 공기압 제어 시스템 개발 (Development of an Active Tire Pressure Control System Using a Tire Simulator)

  • 이규철;류관희;이중용;홍지향;김혁주;유지훈
    • Journal of Biosystems Engineering
    • /
    • 제35권1호
    • /
    • pp.21-30
    • /
    • 2010
  • This study was performed to develop an active tire pressure control system that can adjust tire pressure to the optimum level according to traveling and working condition of agricultural tractor. For the development of active tire pressure control system, pneumatic supplier, solenoid valve block including pneumatic supply line, infinite rotation type pneumatic supplier with rotary joint unit, tire pressure transceiver module and control algorithm were developed. Also, tire simulator was developed. Using this tire simulator, the feasibility of each part constructing actual system was tested by checking the performance. The average communication success ratio was 98.3% between tire pressure transmitter and receiver module according to the various tire rotational speed and data receipt position of receiver module. The communication performance of the developed transmitter and receiver module was very stable in any condition. The tire pressure control system was accomplished by using the proportional control algorithm in this study. Also tire pressure control performance of developed control system was analyzed by using the tire simulator. As a result of control performance analysis to the developed system, the developed control system took 307 seconds to inflate agricultural tractor's tire from 50 kPa to 180 kPa. In opposite case, it took 210 seconds. Also it was able to control the tire pressure accurately under ${\pm}0.9%$ (FS) in any condition.

타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가 (Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure)

  • 김형섭;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가 (Performance Evaluation of a Full Vehicle with Semi-Active MR Suspension at Different Tire Pressure)

  • 김형섭;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험 (Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment)

  • 홍경태;허창도;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구 (A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper)

  • 윤영환;최명진;유송민
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.