• Title/Summary/Keyword: Active rectification scheme

Search Result 2, Processing Time 0.019 seconds

Harmonic Reduction of Electric Propulsion Ship using New Rectification Scheme (새로운 정류방식을 이용한 전기추진선박의 고조파 저감)

  • Kim, Jong-Su;Choi, Jae-Hyuk;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2230-2236
    • /
    • 2012
  • Currently, the AC-to-DC power conversion system using diode rectifiers is mainly used in large vessels. Also, to reduce the total harmonic distortion(THD) of current and voltage, this system requires an additional phase-shifting transformer which can be powered multi-pulses. In this case, due to the installation of the transformer, the spatial or economic loss occurs. This paper presents a novel active rectification scheme using silicon controlled rectifier(SCR) or insulated gate bipolar transistor(IGBT) devices on behalf of the diode rectifiers which are currently operating in large vessels such as LNG Carrier(LNGC). The proposed system can use the low voltage source and reduce current and voltage harmonics generated by nonlinear loads connected to the power distribution bus and save economic costs by removing the phase-shifting transformers which are used in conventional system. Computer simulations are performed under the electric propulsion system which is operating in current large vessel. The results are shown in support of the improvement of THD included in the current and voltage wave forms of propulsion motor.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.