• Title/Summary/Keyword: Active reaction layer

Search Result 116, Processing Time 0.026 seconds

A Study on Efficiency of Chamomile and Thyme Essential Oil About the Basal Layer & Sebaceous Gland in Dry-skin Induced by Surfactant (계면활성제 유발 건성피부의 기저층, 피지선에 대한 Chamomile, Thyme essential oil의 유효성 연구)

  • Jang, Myung-Ok;Choi, Jeung-Sook
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.3 no.2 s.2
    • /
    • pp.12-17
    • /
    • 2005
  • Efficiency study of chamomile and Thyme essential oil about the basal layer & sebaceous gland in dry-skin induced by surfactant is as following : 1. Formal observation of outer skin layer and basal layer There was refreshing effects about Surfactant induction skin inflammation in Chamomile, Thyme essential oil processing group but effect in surface layer appeared by higher thing in Chamomile essential oil and it could know that thing which do not use Thyme essential oil in case Thyme essential oil is ultraviolet rays allergy at skin care because Melanocyte appear on the surface is bigger than Chamomile essential oil that it was usefully reaction in basal layer. 2. Formal observation result of sebaceous glands. There are few damages in all group but there is recuperative through excessive water damage by excessive a sebaceous gland made of mulberry bark secretion because Thyme essential oil application group cause chapped skin phenomenon after surface-active agent processing but is seen that difference does not exist greatly and Thyme essential oil that general skin is strong in permeation is effective, but Surfactant induction skin inflammation estimates that Chamomile essential oil is effective. Therefore, it was considered that use of Chamomile essential oil is effectiveness than Thyme essential oil by essential oil used for recovery after damage of inflammation etc..

  • PDF

The Errect of Interfacial Structure on the Bonding Strength in ${Al}_{2}{O}_{3}$/304 Joint (${Al}_{2}{O}_{3}$/304스트레인레스강 접합체 계면구조가 접합강도에 미치는 영향)

  • Kim, Byeong-Mu;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.282-291
    • /
    • 1993
  • Joining ${Al}_{2}{O}_{3}$ and STS 304 stainless steel by active metal brazing method with using CuI Owt % Ti and Cu -7 .5wt % Zr insert metal, their interfaces were analyzed and strength of the joint brazed with Cu-7.5wt % Zr insert metal also investigated with shear strength testing method. In brazing with Cu-lOwt% Ti insert metal, the single reaction layer was formed by the reaction with Ti and ${Al}_{2}{O}_{3}$ at the interface between ${Al}_{2}{O}_{3}$ and insert metal, but the double reaction layer was found in brazing with Cu-7.5wt % Zr insert metal because of the difference of their wettability on the surface of ${Al}_{2}{O}_{3}$. Fracture shear strength about 86MPa was obtained from ${Al}_{2}{O}_{3}$/Cu-7.5wt% Zr/STS 304 stainless steel joint and reasonable strength of the joints is attributed to the formation of double reaction layer at the interface.

  • PDF

Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

  • Chang, Kyung Hoon;Jo, Mi Na;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (b-glucosidase) from A. niger KCCM 11239 hydrolyzed the ${\beta}$-($1{\rightarrow}6$)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing b-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation (개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Choi, Jong-Ho;Lee, Kug-Seung;Jeon, Tae-Yeol;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Synthesis and Surface Active Properties of Amphoteric Surfactant Derivatives(I);Synthesis of N-Alkyl or Acyl Hydroxy sulfobetaines (양쪽성 이온 계면활성제의 유도체합성 및 계면성에 관한 연구(제1보);N-알킬 혹은 아실히드록시 술포베타인류의 합성)

  • Lee, J.H.;Ha, J.W.;Park, H.J.;No, Y.C.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In order to review industrial application of amphoteric surfactants, new types of hydroxy sulfobetaine, 3-(N, N-dimethyl N-dimethyl-N-alkylammonio)-2-hydroxy-1-propane sulfonate and 3-(N, N-dimethyl N-acylammonio)-2-hydroxy-1-propane sulfonate were prepared by the reaction of quaternized sodium 1-chloro-2-hydroxy-3-propane sulfonate with N, N-dimethyl-N-alkylamine and N, N-dimethyl N-acylamido propylamine that have a straight chain radical of 12, 18 carbon atoms respectively in the presence of alkali catalyst. All the reaction products could be separated by means of column and thin layer chromatography, and the yields of all products ranged in $85{\sim}90%$, the structure of them could be confirmed from IR and $^{1}H$-NMR spectra.

Multilayered phospholipid polymer hydrogels for releasing cell growth factors

  • Choi, Jiyeon;Konno, Tomohiro;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Polymer multilayered hydrogels were prepared on a titanium alloy (Ti) substrate using a layer-by-layer (LBL) process to load a cell growth factor. Two water-soluble polymers were used to fabricate the multilayered hydrogels, a phospholipid polymer with both N, N-dimethylaminoethyl methacrylate (DMAEMA) units and 4-vinylphenylboronic acid (VPBA) units [poly(MPC-co-DMAEMA-co-VPBA) (PMDV)], and the polysaccharide alginate (ALG). PMDV interacted with ALG through a selective reaction between the VPBA units in PMDV and the hydroxyl groups in ALG and through electrostatic interactions between the DMAEMA units in PMDA and the anionic carboxyl groups in ALG. First, the Ti substrate was covered with photoreactive poly vinyl alcohol, and then the Ti alloy was alternately immersed in the respective polymer solutions to form the PMDV/ALG multilayered hydrogels. In this multilayered hydrogel, vascular endothelial growth factor (VEGF) was introduced in different layers during the LbL process under mild conditions. Release of VEGF from the multilayered hydrogels was dependent on the location; however, release continued for 2 weeks. Endothelial cells adhered to the hydrogel and proliferated, and these corresponded to the VEGF release profile from the hydrogel. We concluded that multilayered hydrogels composed of PMDV and ALG could be loaded with cell growth factors that have high activity and can control cell functions. Therefore, this system provides a cell function controllable substrate based on the controlled release of biologically active proteins.

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

VOID DEFECTS IN COBALT-DISILICIDE FOR LOGIC DEVICES

  • Song, Ohsung;Ahn, Youngsook
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.389-392
    • /
    • 1999
  • We employed cobalt-disilicide for high-speed logic devices. We prepared stable and low resistant $CoSi_2$ through typical fabrication process including wet cleaning and rapid thermal process (RTP). We sputtered 15nm thick cobalt on the wafer and performed RTP annealing 2 times to obtain 60nm thick $CoSi_2$. We observed spherical shape voids with diameter of 40nm in the surface and inside $CoSi_2$ layers. The voids resulted in taking over abnormal junction leakage current and contact resistance values. We report that the voids in $CoSi_2$ layers are resulted from surface pits during the ion implantation previous to deposit cobalt layer. Silicide reaction rate around pits was enhanced due to Gibbs-Thompson effects and the volume expansion of the silicidation of the flat active regime trapped dimples. We confirmed that keeping the buffer oxide layer during ion implantation and annealing the silicon surface after ion implantation were required to prevent void defects in CoSi$_2$ layers.

  • PDF

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

Modification of polyamide reverse osmosis membranes seeking for better resistance to oxidizing agents

  • Silva, Lucinda F.;Michel, Ricardo C.;Borges, Cristiano P.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • One of the major limitations in the use of commercial aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes is to maintain high performance over a long period of operation, due to the sensitivity of polyamide (PA) skin layer to oxidizing agents, such as chlorine, even at very low concentrations in feed water. This article reports surface modification of a commercial TFC RO membrane (BW30-Dow Filmtec) by covering it with a thin film of poly(vinyl alcohol) (PVA) crosslinked with glutaraldehyde (GA) to improve its resistance to chlorine. Crosslinking reaction was carried out at 25 and $40^{\circ}C$ by using PVA 1.0 wt.% solutions at different GA/PVA mass ratio, namely 0.0022, 0.0043 and 0.013. Water swelling measurements indicated a maximum crosslinking density for PVA films prepared at $40^{\circ}C$ and GA/PVA 0.0043. ATR-FTIR and TGA analysis confirmed the reaction between GA and PVA. SEM images of the original and modified membranes were used to evaluate the surface coating. Chlorine resistance of original and modified membranes was evaluated by exposing it to an oxidant solution (NaClO 300 mg/L, NaCl 2,000 mg/L, pH 9.5) and measuring water permeability and salt rejection during more than 100 h period. The surface modification effectively was demonstrated by increasing the chlorine resistance of PA commercial membrane from 1,000 ppm.h to more than 15.000 ppm.h.