• 제목/요약/키워드: Active magnetic actuator

검색결과 50건 처리시간 0.026초

능동진동제어를 위한 선형 자기 액츄에이터 개발 (Development of Linear Magnetic Actuator for Active Vibration Control)

  • 이행우;관문규;김기영;이한동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.587-592
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

  • PDF

능동진동제어를 위한 선형 자기 액추에이터 개발 (Development of Linear Magnetic Actuator for Active Vibration Control)

  • 이행우;곽문규;김기영;이한동
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

능동 자기 베어링을 이용한 비접촉식 선형 구동기 (Contact-free Linear Actuator Using Active Magnetic Bearing)

  • 이상헌;백윤수
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용 (Design and Application of Magnetic Damper for Reducing Rotor Vibration)

  • 김영배;이형복;이봉기
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

불균형 보상법을 이용한 능동 자기베어링 구동기의 동특성 규명 (Identification of Active Magnetic Bearing Actuator Using Unbalance Compensation Method)

  • 김철순;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, the in-situ parameter identification method for active magnetic bearing (AMB) actuator based on an open-loop balancing scheme is proposed. The scheme utilizes the relation between the compensating voltage and the known unbalance force. Main advantage of this method is that it is easy to use, yet it gives the actuator dynamics on the actual operating condition of an AMB system. The experimental results show that the proposed scheme compensates the known unbalance accurately and consequently identifies the actuator dynamics effectively.

  • PDF

영구자석 바이어스 자기부상 구동기 설계 및 해석 (Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

Linear oscillatory actuator를 이용한 구조물 진동의 능동 제어 연구 (Application of Linear Oscillatory Actuator to Active Structural Vibration Control)

  • 정태영;문석준;정종안;박희창;장석명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.311-317
    • /
    • 1997
  • In this paper the active vibration control system using a linear oscillatory actuator(LOA) is studied to suppress structural vibration. In the LOA, the AC-power-energized armature generates a shift field in an air gap, which produces a oscillating force to the mover in the magnetic field generated by high density permanent magnets. LOA has relatively simple structure with almost maintenance free, compared with a hydraulic actuator. Performance test of the active vibration control system using a LOA is carried out on a steel test structure under base excitation. From this test, it is confirmed that the acceleration level of the test structure is drastically reduced near the resonant region.

  • PDF

전자기 액튜에이터를 이용한 1/4차량 모델의 능동 진동 제어에 관한 연구 (Active Vibration Control of 1/4 Vehicle Model using Electro-magnetic Actuator)

  • 허신;최강윤;김유일
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.81-92
    • /
    • 1993
  • In this study, quarter vehicle model is used to analyse vibration control effects for ride comfort and handling safety according to this three kinds of control methods, which are the modal control, the sky-hook control and the linear viscous damping control. We performed theoretical analysis and experiments and compared two results. In experiments, electro-magnetic actuator was employed as a force actuator. It is shown that all three methods can effectively control the vehicle model. The modal control method gives similar control results using gain less than the viscous damping control.

  • PDF