• Title/Summary/Keyword: Active bending

Search Result 129, Processing Time 0.027 seconds

Active Vibration Control of Flexible Cantilever Beam Using Piezoceramic Actuators and PID Controller (압전체 작동기와 PID 제어기를 이용한 유연 외팔보의 능동 전동 제어)

  • Choi, Soo-Young;Ahn, Jae-Hong;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2073-2075
    • /
    • 2003
  • This paper presents the active vibration control of flexible cantilever beam using piezoceramic actuators. The transfer function from the force input to the bending displacement was obtained via modal analysis results and piezoelectric constitutive equations. For the active vibration control piezoceramic actuators and sensors were used to construct a flexible smart cantilever beam. To further enhance the sensing and actuation properties of the piezoceramics, a typical interdigitated electrode pattern was fabricated. The PID controller was designed via various simulation and experiment trials. It was shown that the PID controller could suppress vibration of the beam effectively. Simulations and experiments verified good performances of the designed controller.

  • PDF

Study on In-plane Strains of Electro-Active Paper (생체 모방 종이 작동기의 면내 변형에 관한 연구)

  • Jung, Woo-Chul;Kim, Jae-Hwan;Lee, Sun-Kon;Bae, Seung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • Cellulose based Electro-Active Papers (EAPap) is very promising material due to its merits in terms of large bending deformation, low actuation voltage, ultra-lightweight, and biodegradability. These advantages make it possible to utilize applications, such as artificial muscles and achieving flapping wings, micro-insect robots and smart wall papers. This paper investigates the in-plane strains of EAPap under electric fields, which are useful for a contractile actuator application The preparation of EAPap samples and the in-plane strain measurement system are explained, and the test results are shown in terms of electric field, frequency and the oriental ions of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap material, this in-plane strain may be useful for artificial muscle applications.

  • PDF

Comparison of the Flexion-Relaxation Ratio of the Hamstring Muscle and Lumbopelvic Kinematics During Forward Bending in Subjects With Different Hamstring Muscle Flexibility

  • Kim, Chang-ho;Gwak, Gyeong-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • Background: Flexion-relaxation phenomenon (FRP) was a term which refers to a sudden onset of myoelectric silence in the erector spinae muscles of the back during standing full forward flexion. Hamstring muscle length may be related to specific pelvic and trunk movements. Many studies have been done on the FRP of the erector spinae muscles. However, no studies have yet investigated the influence of hamstring muscle flexibility on the FRP of the hamstring muscle and lumbopelvic kinematics during forward bending. Objects: The purpose of this study was to examine the flexion-relaxation ratio (FRR) of the hamstring muscles and lumbopelvic kinematics and compare them during forward bending in subjects with different hamstring muscle flexibility. Methods: The subjects of two different groups were recruited using the active knee extension test. Group 1-consisted of 13 subjects who had a popliteal angle under $30^{\circ}$; Group 2-consisted of 13 subjects who had a popliteal angel above $50^{\circ}$. The kinematic parameters during the trunk bending task were recorded using a motion analysis system and the FRRs of the hamstring muscles were calculated. Differences between the groups were identified with an independent t-test. Results: The subjects with greater hamstring length had significantly less lumbar spine flexion movement and more pelvic flexion movement. The subjects with greater pelvic flexion movement had a higher rate of flexion relaxation during full trunk bending (p<.05). Conclusion: The results of this study suggest that differences in hamstring muscle flexibility might cause changes in people's hamstring muscle activity and lumbopelvic kinematics.

Bending Performance of Bacterial Cellulose Actuator under Water (수중에서 박테리아 셀룰로오스 작동기의 굽힘 성능)

  • Jeon, Jin-Han;Park, Min-Woo;Kim, Seong-Jun;Kim, Jae-Hwan;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.203-204
    • /
    • 2008
  • Bacterial Cellulose Actuator with biocompatible and biodegradable properties was newly developed as an electro-active biopolymer under water. The performance of the BC actuator was improved through Li treatment. The mechanical and chemical properties of BC membranes were measured such as the tensile test, proton conductivity. The surface morphology of the bacterial cellulose was observed by using SEM. The electromechanical bending responses under both direct current and alternating current excitations were investigated. In voltage-current test,the power consumption under dynamic excitation increases with increasing voltage. Present results show that the bacterial cellulose actuator can be a promising smart material and may possibly have diverse applications under water.

  • PDF

A study on the Fracture Mechanical Strength Evaluation in Joint Interface of Ceramics and Metal (세라믹스/금속 접합계면에서의 파괴력학적 강도평가에 관한 연구)

  • 최병기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.20-24
    • /
    • 1996
  • Indentation fracture method and 4-point bending test are carried out to measure the residual stresses and the bending strength, and to investigate the mechanism of fracture mechanics in the bonded interface of ceramic and metal. The results obtained are as follows ; 1) The fracture patterns of bonded materials shows that the delamlnatlon fracture of Interfaces is stablely developed from the interfaces of ceramic/active metallic bonded materials at the specimen center, and the fracture is unstablely generated through a refraction on the middle ceramic. 2) Distribution of residual stresses is quantitatively investigated on the ceramic side of bonded materials. 3) It Is found that the residual stresses of interface vertical direction are concentrated on the bonded interface at the ceramic side.

  • PDF

Performance Characterization of Polyaniline Coated Electro-Active Paper Actuator (폴리아닐린이 코팅된 Electro-Active Paper 작동기 성능평가)

  • Ko, Hyun-U;Mun, Seong Cheol;Zhai, Lindong;Kim, Ki-Baek;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.658-664
    • /
    • 2013
  • Bending actuators composed of cellulose with an electrically conducting polymer (CP) are fabricated and their performance is characterized in the air. Two different counter ions, perchlorate and tetrafluoroborate are used as dopant ions in the polyaniline CP processing. CP-cellulose-CP trilayer and CP-cellulose bilayer samples are fabricated with different dopant ions, and their actuation performance is evaluated in terms of tip displacement, blocked force and electrical power consumption along with the humidity level and actuation frequency. The trilayer samples substantially enhanced the tip displacement compared to the bilayer ones. The actuation performance of the trilayer actuator is three times better than that of original cellulose electro-active paper (EAPap) actuator. The displacement and blocked force of CP-EAPap actuators are dependent on the humidity and frequency.

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Sliding Plastic Rollable Bistable LCD

  • Buchnev, O.;Reshetnyak, V.;Reznikov, Yu.;Tereshchenko, O.;Dusheiko, M.;Cross, L.;Kwon, Soon-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.297-299
    • /
    • 2004
  • We developed a rollable bistable LCD whose substrates are bonded by elastic glue and slide over one other when the LCD is rolled. We produced a 2.5 inch active area, 16x16 pixels prototype and demonstrated multifold bending and rolling of the display in a tube with 2 cm diameter.

  • PDF

Large Conformational Changes and Molecular Recognition in Signal Transduction: Calmodulin and Active Transport/Chemosensory Receptors

  • QUIOCHO, FLORANTE A.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.9-10
    • /
    • 1997
  • Calmodulin: very large conformation change of helix uncoiling, hinge-bending and domain rotation. Calmodulin (CaM) is the principal Ca$\^$2+/ -dependent regulator of a variety of important eukaryotic cellular processes. In many of these processes, calmodulin activates a plethora of target enzymes, and the calmodulin-binding domains in several targets have been shown to residue in a region of about 18-residue peptide segment.(omitted)

  • PDF