• Title/Summary/Keyword: Active Trim Panel

Search Result 4, Processing Time 0.018 seconds

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 능동제어)

  • Elliott Stephan J.;Jeong, W.B.;Hong, Chin-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

Volume Velocity Control of Active Panel to Reduce Interior Noise (실내소음 저감을 위한 능동패널의 체속도 제어)

  • 김인수
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

Multiple Vibration Control of a Trim Panel to Reduce Structure-borne Noise (구조 소음저감을 위한 격자 패널의 다중 진동제어)

  • Kim, In-Soo;Kim, Yeung-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.153-163
    • /
    • 1999
  • 본 연구에서는 격자패널을 통한 소음전달을 감소시키기 위하여 외부 구조적 가진으로부터 유발된 경량 패널의 진동을 능동 제어하는 기법을 기술한다. 최적 되먹임제어기와 적응 앞먹임제어기가 결합된 혼합형 제어기가 진동제어기로 사용된다. 되먹임제어기는 주파수 영역의 모델규명법에 의해 추출된 다중 입/출력 패널진동계 모델에 대하여 LQG 최적기법을 이용하여 감쇠능을 향상시키도록 설계된다. 앞먹임제어기는 되먹임 궤환의 결합효과를 자동적으로 보정할 수 있는 제안된 학습법칙에 기초하여 패널의 잔류진동이 최소가 되도록 적응된다. 45.7${\times}$45.7${\times}$2.54 ${cm^3}$ 벌집형상의 고강도 패널, 4개의 관성형 구동기 및 이산신호처리장치에 의해 구현된 패널 진동계에 대한 능동제어 실험을 수행해 본 결과 600Hz 주파수대역에 대한 12dB 진동저감이 이루어 질 수 있었다.

  • PDF