• Title/Summary/Keyword: Active Thermal Control

Search Result 127, Processing Time 0.034 seconds

An Experimental Study on the Temperature and Humidity Evaluation in the Summer and Winter Season of the Korean Traditional Houses in Chonnam Province (전남지방 전통주택 하절기와 동절기의 온습도 평가에 관한 실험적 연구)

  • Lee, Tai-Kang;Choi, Eun-Seok;Kim, Hang;Kim, Hyung-Ryul;Gi, No-Gab;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Korean Traditional houses has been evolved and developed in many years, adopting the natural environment to control exterior conditions. These control method are various passive system of using natural materials, considering micro climate, building lay out, and these system are more natural and ecological to make the comfortable indoor climate than active systems of the present houses. This study aims to analyzed control performance of outdoor environment of five Korean traditional houses during the summer and winter. These houses are varied with lay out and floor plan to reflect the way of control for environmental condition, surveyed the reverberation time and sound level difference between rooms of the main living room and other main floored room, master room and kitchen. Especially air temperature and humidity have been measured simultaneously in each rooms to compare with outdoor condition. As a result, the variation of air temperature and humidity of most rooms are considerably static while condition of outdoors are much varied, it is showed that indoor climate has been controled with traditional soiled walls.

The Effects of Sustained Natural Apophyseal Glides on Pain and Lumbar Stability in Patient with Chronic Low Back Pain (척추후관절가동술이 만성요통환자의 통증과 요부안정성에 미치는 영향)

  • Lee, Young-Hwa;Kwon, Won-An;Lee, Jea-Hong;Kim, Jun-Hyun;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.3
    • /
    • pp.203-213
    • /
    • 2008
  • Purpose : The purpose of the study was to investigate the effects of sustained natural appophyseal glides (SNAGS) on pain and lumbar stability in patients with chronic low back pain. Methods : The subjects were assigned randomly devided SNAGS group(n=18) and control group(n=18). The SNAGS group received Infrared(IR) used thermal therapy for 20minutes, Interference current therapy(ICT) used electrical therapy for 10minutes and SNAGS for 10minutes to 15minutes. The control group received IR used thermal therapy for 20minutes, ICT used electrical therapy for 10minutes and active stretching exercise for 10minutes to 15minutes. The visual analogue scale(VAS) and lumbar stability were measured at pre-treatment and post-treatment. Results : The results of this study were summarized as follows : 1. The VAS score of SNAGS group and control group was significantly within-subjects pre-test and post-test (p<.05), there was significantly difference between-subjects on each groups(p<.05). 2. The SNAGS group was significantly increased in variation of lumbar stability on $0^{\circ}$, $180^{\circ}$, $90^{\circ}$, $-90^{\circ}$, $45^{\circ}$, $-45^{\circ}$, $135^{\circ}$ and $-135^{\circ}$ within-subjects pre-test and post-test(p<.05), but The control group wasn't significantly increased in variation of lumbar stability on $0^{\circ}$, $180^{\circ}$, $90^{\circ}$, $-90^{\circ}$, $45^{\circ}$, $-45^{\circ}$, $135^{\circ}$ and $-135^{\circ}$ within-subjects pre-test and post-test(p>.05). There was significantly difference between-subjects on each groups(p<.05). Conclusion : In conclusion, SNAGS found that effective to decrease of pain and increase of lumbar stability. Therefore, the results of this study suggests that SNAGS is beneficial treatment for chronic low back pain.

  • PDF

Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options (질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

Effects of biostimulants, AMPEP and Kelpak on the growth and asexual reproduction of Pyropia yezoensis (Bangiales, Rhodophyta) at different temperatures

  • Sook Kyung Shin;Qikun Xing;Ji-Sook Park;Charles Yarish;Fanna Kong;Jang K. Kim
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Acadian marine plant extract powder (AMPEP) and Kelpak are commercial biostimulants derived from brown algae Ascophyllum nodosum. This study was to determine if AMPEP and Kelpak can induce thermal resistance in Pyropia yezoensis. P. yezoensis blades were exposed to different concentrations (control: 0, low: 0.001, high: 1 ppm) of AMPEP and Kelpak at 10℃ for 6 and 7 days, respectively. Those blades were then cultivated in von Stosch enriched seawater medium at different temperatures (10, 15, 20, and 25℃) with 12 : 12 L : D photoperiod and 100 µmol m-2 s-1 of photosynthetically active radiation for additional 15 days. Results showed that P. yezoensisreproduced archeospores at 20 and 25℃ at all biostimulant conditions within 15 days. At lower temperatures (10 and 15℃), only AMPEP-treated P. yezoensis reproduced archeospores. P. yezoensis exposed to 1 ppm Kelpak exhibited higher phycoerythrin and phycocyanin contents than control and 0.001 ppm conditions at 15℃. AMPEP-treated conditions showed higher phycoerythrin and phycocyanin contents than control at 10℃. These results suggest that AMPEP and Kelpak may not enhance the thermal resistance of P. yezoensis. However, AMPEP stimulated archeospores release at lower temperatures. The treatment of AMPEP and Kelpak also increased the pigment contents in P. yezoensis. These results suggest that the use of seaweed-derived biostimulants can provide some economic benefits in P. yezoensis aquaculture. The enhancement of archeospores formation by AMPEP at lower temperature may also increase the productivity since Pyropia farming relies on the accumulation of secondary seedings via asexual reproduction.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

UPFC Device: Optimal Location and Parameter Setting to Reduce Losses in Electric-Power Systems Using a Genetic-algorithm Method

  • Mezaache, Mohamed;Chikhi, Khaled;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ensuring the secure operation of power systems has become an important and critical matter during the present time, along with the development of large, complex and load-increasing systems. Security constraints such as the thermal limits of transmission lines and bus-voltage limits must be satisfied under all of a system’s operational conditions. An alternative solution to improve the security of a power system is the employment of Flexible Alternating-Current Transmission Systems (FACTS). FACTS devices can reduce the flows of heavily loaded lines, maintain the bus voltages at desired levels, and improve the stability of a power network. The Unified Power Flow Controller (UPFC) is a versatile FACTS device that can independently or simultaneously control the active power, the reactive power and the bus voltage; however, to achieve such functionality, it is very important to determine the optimal location of the UPFC device, with the appropriate parameter setting, in the power system. In this paper, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a network for the enhancement of the power-system loadability and the minimization of the active power loss in the transmission line. To verify our approach, simulations were performed on the IEEE 14 Bus, 30 Bus, and 57 Bus test systems. The proposed work was implemented in the MATLAB platform.

An Experimental Study on Heat Transfer in a Falling Liquid Film with Surfactant (계면활성제의 농도가 유하액막의 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.150-155
    • /
    • 2006
  • Falling liquid plays a role in a wide variety of naturally occurring phenomena as well as in the operation of industrial process equipment where heat and mass transfer take place. In such cases, it is required that the falling film should spread widely on the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study the heat transfer characteristics for a falling liquid film has been investigated by an addition of the surface active agents. The falling liquid film was formed on a vertical flat plate. As the mass flow rate of liquid falling film is increased, the wetted area is a little increased while the heat transfer rate as well as heat transfer coefficient is significantly increased. It is also found that both wetted area and heat transfer rate is substantially increased while heat transfer coefficient is a little increased with an increase in the surfactant concentration at a given mass flow rate.

  • PDF

The Impact of Thermal Stress, Mechanical Stress and Environment on Dimensional Reproducibility of Polyester Film during Flexible Electronics Processing

  • MacDonald, William A.;Eveson, Robert;MacKerron, Duncan;Adam, Raymond;Rollins, Keith;Rustin, Robert;Looney, M. Kieran;Stewart, John;Hashimoto, Katsuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.448-451
    • /
    • 2007
  • DuPont Teijin $Films^{TM}$ (DTF) have developed engineered substrates specifically for the flexible electronics market. $Teonex^{(R)}$ Q65, $Melinex^{(R)}$ ST506 and ST504 are biaxially oriented crystalline polyesters with the option of planarised surfaces. These films are emerging as competitive materials for the base substrate in OLED displays and active matrix backplanes. Given the demanding dimensional reproducibility requirements in the display applications, it is critical to control the several factors that can influence the film distortion in order to achieve the ultimate performance. This paper will discuss the impact of thermal stress, mechanical stress and the processing environment on dimensional reproducibility of polyester film and give examples of how this impacts on the film in device manufacture.

  • PDF

Seperate Driving System For Large Area X-ray Detector In Radiology (대면적 X-ray 검출기를 위한 분할 구동 시스템)

  • Lee, D.G.;Park, J.K.;Kim, D.H.;Nam, S.H.;Ahn, S.H.;Park, H.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • The properties of these detectors can be controlled by electronics and exposure conditions. Flat-panel detectors for digital diagnostic imaging convert incident x-ray images to charge images. Flat panel detectors gain more interest real time medical x-ray imaging. Active area of flat panel detector is $14{\times}17$ inch. Detector is based on a $2560{\times}3072$ away of photoconductor and TFT pixels. X-ray conversion layer is deposited upper TFT array flat panel with a 500m by thermal deposition technology. Thickness uniformity of this layer is made of thickness control technology(5%) of thermal deposition system. Each $139m{\times}139m$ pixel is made of thin film transistor technology, a storage capacitor and charge collection electrode having geometrical fill factor of 86%. Using the separate driving system of two dimensional mosaic modules for large area, that is able to 4.2 second per frame. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system..

  • PDF

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.