• Title/Summary/Keyword: Active Suspension

Search Result 396, Processing Time 0.033 seconds

Toxicity Assessment of Silver Ions Compared to Silver Nanoparticles in Aqueous Solutions and Soils Using Microtox Bioassay (Microtox 생물검정법을 이용한 은 이온과 은 나노입자의 수용액과 토양에서의 독성 비교 평가)

  • Wie, Min-A;Oh, Se-Jin;Kim, Sung-Chul;Kim, Rog-Young;Lee, Sang-Phil;Kim, Won-Il;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1114-1119
    • /
    • 2012
  • This study was conducted to assess the microbial toxicity of ionic silver solution ($Ag^+N$) and silver nanoparticle suspension ($Ag^0NP$) based on the Microtox bioassay. In this test, the light inhibition of luminescent bacteria was measured after 15 and 30 min exposure to aqueous solutions and soils spiked with a dilution series of $Ag^+N$ and $Ag^0NP$. The resulting dose-response curves were used to derive effective concentration (EC25, $EC_{50}$, EC75) and effective dose ($ED_{25}$, $ED_{50}$, $ED_{75}$) that caused a 25, 50 and 75% inhibition of luminescence. In aqueous solutions, $EC_{50}$ value of $Ag^+N$ after 15 min exposure was determined to be < $2mg\;L^{-1}$ and remarkably lower than $EC_{50}$ value of $Ag^0NP$ with $251mg\;L^{-1}$. This revealed that $Ag^+N$ was more toxic to luminescent bacteria than $Ag^0NP$. In soil extracts, however, $ED_{50}$ value of $Ag^+N$ with 196 mg kg-1 was higher than $ED_{50}$ value of $Ag^0NP$ with $104mg\;kg^{-1}$, indicating less toxicity of $Ag^+N$ in soils. The reduced toxicity of $Ag^+N$ in soils can be attributed to a partial adsorption of ionic $Ag^+$ on soil colloids and humic acid as well as a partial formation of insoluble AgCl with NaCl of Microtox diluent. This resulted in lower concentration of active Ag in soil extracts obtained after 1 hour shaking with $Ag^+N$ than that spiked with $Ag^0NP$. With longer exposure time, EC and ED values of both $Ag^+N$ and $Ag^0NP$ decreased, so their toxicity increased. The toxic characteristics of silver nanomaterials were different depending on existing form of Ag ($Ag^+$, $Ag^0$), reaction medium (aqueous solution, soil), and exposure time.

Effects Of Cultured Bone Cell On The Regeneration Of Alveolar Bone (배양골세포 이식이 치조골재생에 미치는 영향)

  • Jeong, Soon-Joon;Herr, Yeek;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • This study was performed to estimate the effects of cultured bone cell inoculated on porous type hydroxyaptite for the regeneration of the artificial alveolar bone defect. In this experiment 3 beagle dogs were used, and each of them were divided into right and left mandible. Every surgical intervention were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). To reduce the gingival bleeding during surgery, operative site was injected with Lidocaine hydrochloride(l:80,000 Epinephrine) as local anesthesia. After surgery experimental animal were feeded with soft dietl Mighty dog, Frisies Co., U.S.A.) for 1 weeks to avoid irritaion to soft tissue by food. 2 months before surgery both side of mandibular 1st premolar were extracted and bone chips from mandibular body were obtained from all animals. Bone cells were cultured from bone chips obtained from mandible with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Porous type hydroxyapatite were immerse into the high concentrated cell suspension solution, and put 4 hours for attachin the cells on the surface of hydroxyapatite. Graft material were inserted on the artificial bone defect after 3 days of culture. Before insertion of cellinoculated graft material, scanning electronic microscopic observation were performed to confirm the attachment and spreading of cell on the hydroxyapatite surface. 3 artificial bone defects were made with bone trephine drill on the both side of mandible of the experimental animal. First defect was designed without insertion of graft material as negative control, second was filled with porous replamineform hydroxyapatite inoculated with cultured bone marrow cells as expermiental site, and third was filled with graft materials only as positive control. The size of every artificial bone defect was 3mm in diameter and 3mm in depth. After the every surgical intervention of animals, oral hygiene program were performed with 1.0% chlorhexidine digluconate. All of the animals were sacrificed at 2, 4, 6 weeks after surgery. For obtaining histological section, tissus were fixed in 10% Buffered formalin and decalcified with Planko - Rycho Solution for 72hr. Tissue embeding was performed in paraffin and cut parallel to the surface of mandibular body. Section in 8um thickness of tissue was done and stained with Hematoxylin - Eosin. All the specimens were observed under the light microscopy. The following results were obtained : 1. In the case of control site which has no graft material, less inflammatory cell infiltration and rapid new bone forming tendency were revealed compared with experimental groups. But bone surface were observed depression pattern on defect area because of soft tissue invasion into the artificial bone defect during the experimental period. 2. In the porous hydroxyapatite only group, inflammatory cell infiltration was prominet and dense connective tissue were encapsulated around grafted materials. osteoblastic activity in the early stage after surgery was low to compared with grafted with bone cells. 3. In the case of porous hydroxyapatite inoculated with bone cell, less inflammatory cell infiltration and rapid new bone formation activity was revealed than hydroxyapatite only group. Active new bone formation were observed in the early stage of control group. 4. The origin of new bone forming was revealed not from the center of defected area but from the surface of preexisting bony wall on every specimen. 5. In this experiment, osteoclastic cell was not found around grafted materials, and fibrovascular invasion into regions with no noticeable foreign body reaction. Conclusively, the cultured bone cell inoculated onto the porous hydroxyapatite may have an important role of regeneration of artificial bone defects of alveolar bone.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Studies on Application Method and Safety of Macrogranule(GG) Herbicide for Remote-controlled Aerial Application (무인헬기용 Macrogranule(GG) 제초제의 안정성 및 살포방법 연구)

  • Yoon, Cheol-Su;Bae, Chang-Hyu;Lee, Sheong-Chun;Kim, Kyung-Hyun;Lee, Kye-Hwan;Cho, Tae-Kyoung;Hwang, In-Cheon
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.294-307
    • /
    • 2011
  • This experiment carried out to confirm characteristics of macrogranule (GG) for herbicidal efficacy by using remote-controlled aerial application (RCAA) to control annual and perennial weeds in rice paddy field, application methods, and application times of formulation types. Particle of 500 g GG having average diameter of 2.5~3 mm was over 85 percent, the bulk density of the particle was $0.2\sim0.4g\;mL^{-1}$ and the particle was water floating granule. Active ingredients and external form of halosulfuronmethyl+mefenacet GG remained stable under condition of storage stability test. The disintegration time of the GG was faster as the water temperature was increased. But disintegration time was not affected by pH on the water conditions. By using hand, spoon and power applicator, drift distances of GG were 4~5m, 7 m and 10~12 m, respectively. GG showed good herbicidal efficacy and plant safety in all of the application methods such as, using hand, spoon, power applicator and RCAA. Application times of GG, GR, SC and TB by hand in $4,000m^2$ were 38 min. 4 sec, 42 min. 20 sec, 38 min. 10 sec and 21 min. 4 sec, respectively, but application time of GG by using RCAA was 1 min 32 sec. According to appearance and characteristics of formulation types, suspension concentrate (SC) and GG were possible formulation types for RCAA.

Bactericidal Efficacy of a Fumigation Disinfectant with Ortho-phenylphenol as an Active Ingredient Against Pseudomonas Aeruginosa and Enterococcus Hirae (Ortho-phenylphenol을 주성분을 하는 훈증소독제의 Pseudomonas aeruginosa와 Enterococcus hirae에 대한 살균효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Kim, Yongpal;Yu, Eun-Ah;Yoo, Chang-Yeol;Hong, Il-Hwa;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2014
  • This test was performed to evaluate the bactericidal efficacy of a fumigation disinfectant containing 20% ortho-phenylphenol against Pseudomonas aeruginosa (P. aeruginosa) and Enterococcus hirae (E. hirae). In preliminary tests, P. aeruginosa and E. hirae working culture suspension number (N value) were $2.8{\times}10^8$ and $4.0{\times}10^8CFU/mL$, respectively. And all the colony numbers on the carriers exposed to the fumigant (n1, n2, n3) were higher than 0.5N1 (the number of bacterial test suspentions by pour plate method), 0.5N2 (the number of bacterial test suspentions by filter membrane method) and 0.5N1, respectively. In addition, the mean number of P. aeruginosa and E. hirae recovered on the control-carriers (T value) was $2.8{\times}10^8$ and $3.4{\times}10^6CFU/mL$, respectively. In the bactericidal effect of the fumigant, the reduction number of $2.8{\times}10^8$ (d value) was 6.46 and 5.19 logCFU/mL, respectively. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. With the results from this study, the fumigation disinfectant containing 20% ortho-phenylphenol has an effective bactericidal activity, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with the pathogenic bacteria.

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF