• Title/Summary/Keyword: Active Removal

Search Result 411, Processing Time 0.03 seconds

Catalystic effect of Sludge on $NO_x$ removal in Packed bed reactor (Packed bed형 반응기에서 $NO_x$ 제거에 미치는 슬러지의 촉매효과)

  • Park, Jae-Yoon;Lee, Dong-Hoon;Koh, Hee-Suk;Jung, Jang-Gun;Bae, Myung-Whan;Kim, Jong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1780-1782
    • /
    • 2001
  • In this experiment, an attempt to use the sludge pellets as catalyst for NO removal from simulated gas is experimentally investigated by using $BaTiO_3$-sludge packed-bed reactor of plate-plate geometry. An experimental investigation has been conducted for NO concentration of 50[ppm] balanced with air, a gas flow rate of 5[1/min]. $BaTiO_3$ pellets are filled at upstream of reactor for corona discharge and sludge pellets are put at downstream of reactor for catalystic effect. The volume rate of sludge pellets to $BaTiO_3$ pellets is 50[%] and AC voltage to dischare the gases was supplied. In the result, when sludge pellets is seperated to $BaTiO_3$ by other reactor and AC voltage is supplied to $BaTiO_3$ and sludge pellets NO, $NO_2$ removal rate is higher. When gas temperature increase from room temperature to 100[$^{\circ}C$], NO removal is decreased while $NO_2$ concentration is independent on gas temperature. This result suggest that the removal mechanism of active oxyzen species and $NO_2$ in sludge is not absorption, but chemical reaction. Temperature of heating treatment is on sludge pellets increased, $NO_x$ removal rate is decrease. It is thought that organic compound is removed by heating treatment.

  • PDF

Effect of Current Density on Material Removal in Cu ECMP (구리 ECMP에서 전류밀도가 재료제거에 미치는 영향)

  • Park, Eunjeong;Lee, Hyunseop;Jeong, Hobin;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Studies on the Detergency Characteristics of Free Fatty Acid in Oily Soil. Part 1. Detergency of Palmitic Acid. (오염중의 유이지방산이 세척에 미치는 영향(제일보 팔미트산의 세척 특성))

  • Chung Hae Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 1977
  • The effects of surfactants and concentration of NaOH in surfactant solution on the removal of free fatty acid soil from cotton fabrics were investigated. Cotton fabrics were soiled with palm itic acid which is the most common fatty acid found in natural oily soil and washed in Lauder-ometer with various types of surfactant with or without NaOH. The rate of soil removal was estimated by analyzing palmitic acid contents in fabric before ar d after washing. Analysis of palmitic contents was made by extracting palmitic acid with azeotropic mixture of alcohol-benzene and the extracts were titrated with standard NaOH solution. It was shown that the types of surfactant are important factor in free fatty acid removal and the efficiency increases in the following order: SLS$90\%$ of initial sorption. In relation to the mechanism of detergency, the suspending and emulsifying power of surfactants were also examined. From the results of this experiments, it could be concluded that the soap formation with alkali and the suspending power of surfactant arc significant factors in free fatty acid soil removal, but the emulsifying power of it is neglizible.

  • PDF

A Study on the Quality Improvement of Raw-Water Using Submerged Biofilter (생물막공정에 의한 상수원수의 수질개선에 관한 연구)

  • Lee, Soo-sik;Ahn, Seung-seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • This study aims at a proposal of the plan that can improve raw water quality by an experimental study using influent water of Nak-dong river, which has been used as raw water for drinking in U-city, through the establishment of the submerged biofilter process PILOT PLANT of media packing channel method. From the analysis of removal efficiency for each water quality item of the collected sample, following results are obtained. First of all, the removal rate of suspended material, BOD, COD, T-N, TOC, turbidity, and $NH_3$ -N appear 82%, 78%, 42%, 15%, 57%, 43%, 54%, and 55% respectively and it is known that the submerged biofilter process of media packing channel method takes effects on water quality improvement from the above analysis results of water treatment efficiency. And the analyzed results for water temperature, residence time, and activities of microorganism, which can be the factors affect on water quality improvement, are as follows. 1) The removal rate variation of SS, BOD, and COD attendant on water temperature change is examined and it is known that the removal rate increases at $13^{\circ}C$ or above. 2) The removal rate of SS, BOD, and COD attendant on residence time is most active in the range of 0~18hr, 0~1.8hr, 0~2.7hr respectively, so it is found that the removal rate becomes smaller after 2.7hr. 3) From the examination of microorganism activity with the abundance of normal bacteria, it is found that the floating bacteria decrease as the flow distance from raw water inflow point of PILOT PLANT increases, and the adhesive bacteria have no concern with the flow distance. And it its known that the biomass of fine algae decreases as the flow distance from the raw water inflow point of PILOT PLANT increases from the examination with Chl-a.

  • PDF

Differences in Privacy-Protective Behaviors by Internet Users in Korea and China (인터넷 사용자의 개인정보보호 행동의 차이에 관한 연구)

  • Zhang, Chao;Wan, Lili;Min, Dai-Hwan;Rim, Seong-Taek
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.93-107
    • /
    • 2012
  • Privacy-protective behavior can be classified into passive behavior and active behavior. Passive behavior includes refusal, misrepresentation, and removal, while word-of-mouth, complaint, and seeking for help belong to active behavior. Internet users in different countries may take different types of privacy-protective behavior because of cultural and social differences. This study analyzes the differences in Internet users' privacy-protective behavior between Korea and China. Korean Internet users take refusal, complaint, and seeking to protect their privacy information, while misrepresentation is not an option for Korean Internet users. Chinese Internet users take refusal, complaint, seeking, and misrepresentation to protect their privacy information. In Korea, passive behavior (refusal) is chosen more often than active behavior (complaint and seeking for help), while in China active behavior(complaint and seeking for help) is preferred to passive behavior (refusal and misrepresentation). The differences of privacy-protective behavior in the two countries may provide some implications for online companies, if they want to avoid the business risk due to privacy concerns and to take appropriate steps to deal with privacy-protective behavior by Internet users.

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.

Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads (Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구)

  • 전수진;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.