• Title/Summary/Keyword: Active Range Finder

Search Result 7, Processing Time 0.025 seconds

A study on the theoretical minimum resolution of the laser range finder (레이저 거리계의 이론적 최소 분해능에 관한 연구)

  • 차영엽;권대갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.644-647
    • /
    • 1996
  • In this study the theoretical minimum resolution analysis of an active vision system using laser range finder is performed for surrounding recognition and 3D data acquisition in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. In the result, the resolution of range data in laser range finder is depend on distance between lens center of CCD camera and light emitter, view and beam angles, and parameters of CCD camera.

  • PDF

A study on the resolution of the laser range finder (레이저 거리계의 분해능에 관한 연구)

  • Cha, Yeong-Yeop;Yu, Chang-Mok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.82-87
    • /
    • 1998
  • In this study, the theoretical resolution analysis of an active vision system using laser range finder is performed for surrounding recognition and 3D data acquisition in unknown environment. In the result, the resolution of range data in laser range finder is depend on the distance between lens center of CCD camera and light emitter, view angle, beam angle, and parameters of CCD camera. The theoretical resolutions of the laser range finders of various types which are based on parameters effected resolution are calculated and experimental results are obtained in real system.

  • PDF

A Study on the Influence of the Object's Reflectance on the Active Range Finder (물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

자율주행 로봇을 위한 Laser Range Finder

  • 차영엽;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.266-270
    • /
    • 1992
  • In this study an active vision system using a laser range finder is proposed for the navigation of a mobile robot in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates around the robot by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. A high speed image processing algorithm is proposed for the real-time navigation of the mobile robot. Through experiments it is proved that the accurate and real-time recognition of environment is able to be realized using the proposed laser range finder.

A Multi-Channel Correlative Vector Direction Finding System Using Active Dipole Antenna Array for Mobile Direction Finding Applications

  • Choi, Jun-Ho;Park, Cheol-Sun;Nah, Sun-Phil;Jang, Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2007
  • A fast correlative vector direction finding(CVDF) system using active dipole antenna array for mobile direction finding(DF) applications is presented. To develop the CVDF system, the main elements such as active dipole antenna, multi-channel direction finder, and search receiver are designed and analyzed. The active antenna is designed as composite structure to improve the filed strength sensitivity over the wide frequency range, and the multi-channel direction finder and search receiver are designed using DDS-based PLL with settling time of below 35 us to achieve short signal processing time. This system provides the capabilities of the high DF sensitivity over the wide frequency range and allows for high probability of intercept and accurate angle of arrival(AOA) estimation for agile signals. The design and performance analysis according to the external noise and modulation schemes of the CVDF system with five-element circular array are presented in detail.

An Exact 3D Data Extraction Algorithm For Active Range Sensor using Laser Slit (레이저 슬릿을 사용하는 능동거리 센서의 정확한 3D 데이터 추출 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.73-85
    • /
    • 1995
  • The sensor system to measure the distance precisely from the center of the sensor system to the obstacle is needed to recognize the surrounding environments, and the sensor system is to be calibrated thoroughly to get the range information exactly. This study covers the calibration of the active range sensor which consists of camera and laser slit emitting device, and provides the equations to get the 3D range data. This can be possible by obtaining the extrinsic parameters of laser slit emitting device through image processing the slits measured during the constant distance intervals and the intrinsic parameters from the calibration of camera. The 3D range data equation derived from the simple geometric assumptions is proved to be applicable to the general cases using the calibration parameters. Also the exact 3D range data were obtained to the object from the real experiment.

  • PDF

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF