• Title/Summary/Keyword: Active Information Resource (AIR)

Search Result 3, Processing Time 0.019 seconds

An Agent-based Network Management System Using Active Information Resources

  • Kinoshita, Tetsuo;Kitagata, Gen;Takahashi, Hideyuki;Sasai, Kazuto;Kalegele, Khamisi
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.10-15
    • /
    • 2013
  • An expert network administrator is not always stationed as disasters happen. In that case, it is desirable that a novice administrator is capable of taking part in network recovery operations as well. In this paper, an agent-based network management system in emergency situations is presented. We use the Active Information Resource based Network Management System (AIR-NMS) to relieve the human administrator from parts of her management tasks and present an interface that remotely can control this management system. The effectiveness of the system is demonstrated by experiments using a prototype system.

A Knowledge-based Network Management System Using Active Information Resources

  • Kinoshita, Tetsuo;Kitagata, Gen;Takahashi, Hideyuki;Sasai, Kazuto;Kalegele, Khamisi
    • International journal of advanced smart convergence
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • An expert network administrator is not always stationed as disasters happen. In that case, it is desirable that a novice administrator is capable of taking part in network recovery operations as well. In this paper, aknowledge-based network management system in emergency situations is presented. We use the Active Information Resource based Network Management System (AIR-NMS) to relieve the human administrator from parts of her management tasks and present an interface that remotely can control this management system. The effectiveness of the system is demonstrated by experiments using a prototype system.

Analysis of Optimal Locations for Resource-Development Plants in the Arctic Permafrost Considering Surface Displacement: A Case Study of Oil Sands Plants in the Athabasca Region, Canada (지표변위를 고려한 북극 동토 지역의 자원개발 플랜트 건설 최적 입지 분석: 캐나다 Athabasca 지역의 오일샌드 플랜트 사례 연구)

  • Taewook Kim;YoungSeok Kim;Sewon Kim;Hyangsun Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.275-291
    • /
    • 2023
  • Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.