• Title/Summary/Keyword: Active Flow Control

검색결과 324건 처리시간 0.025초

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

전력계통의 조류해석에서 STATCOM과 UPFC의 모선전압 제어효과에 대한 비교연구 (A Comparative Study on the Bus Voltage Control Effect of STATCOM and UPFC in Power Flow Analysis of Power Systems)

  • 김덕영;국경수
    • 조명전기설비학회논문지
    • /
    • 제15권5호
    • /
    • pp.41-45
    • /
    • 2001
  • 본 논문은 전력계통의 조류해석시에 STATCOM과 UPEC의 모선전압 제어효과를 비교연구하였다. 시뮬레이션은 전력계통의 종합해석용 소프트웨어인 PSS/E를 사용하였으며, PSS/E에서 아직 제공하지 않는 UPFC의 모선 전압에 대한 효과를 해석하기 위해, 선로에서의 유효·무효전력과 모선의 전압이 적절히 제어되고 있는 상황에서 UPFC룰 동기조상기와 부하로 등가하여 나타내었다. 이러한 UPEC의 병렬 인버터가 설치된 모선의 전압제어뿐만 아니라 직렬 인버터를 통하여 선로의 유효·무효전력을 효과적으로 제어함으로써 전력계통의 조류해석시에 STATCOM 보다 넓은 범위의 모선전압을 효과적으로 제어할 수 있음을 확인할 수 있었다.

  • PDF

제트 블로잉에 의한 에어포일의 실속후 특성 향상 (Enhancement of Airfoil Post-Stall Characteristics via a Jet Blowing)

  • 이기영;정형석;조동현;손명환
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.188-197
    • /
    • 2007
  • Active flow control, in the form of steady and unsteady momentum injection via jet blowing was studied. A jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin slot. The normal and drag forces were measured with leading edge or trailing edge blowing Jet and compared with the results obtained with no blowing. The blowing jet has been shown to improve the aerodynamic performance of the airfoil. The steady jet proved more effective than pulsating jet in these experimental conditions. Furthermore for the case of leading edge steady blowing jet, the alleviation of non-linearity in the normal force curve slope can be seen at higher angles of attack. No effective trailing edge jet was observed in this highly separated flow. This shows that the stall control is highly depends on the characteristics of the boundary layer near the jet slot.

능동제어를 이용한 구의 저항 감소 (Active Controls of Flow Over a Sphere for Drag Reduction)

  • 전승;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2006
  • The objective of this study is to propose methods of controlling the wake behind a sphere for drag reduction using the suboptimal control theory and surrogate management framework, respectively. The Reynolds numbers considered is 300 at which the base flow is unsteady planar symmetric. Given the cost function defined as the square of the difference between the target pressure (potential-flow pressure) and real flow pressure on the sphere surface, the suboptimal control makes the flow steady axisymmetric and produces drag reduction. Based on the actuation profile from the suboptimal control, the optimal wavy actuation profile is obtained using the surrogate management framework and produces drag reduction.

  • PDF

이온풍을 이용한 실린더 뒤의 후류 제어 (The wake flow control behind a circular cylinder using ion wind)

  • 현기탁;전중환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.459-462
    • /
    • 2002
  • Many active and passive flow control methods have been studied since decades, but there are only few works about flow control methods using ion wind. This paper presents an experimental study on the wake control behind a circular cylinder using ion wind, a bulk motion of neutral molecules driven by locally ionized air of corona discharge. Experiments are done f3r different electrohydrodynamic numbers - the ratio of an electrical body farce to a fluid Inertial force - from 0 to 2 and for the Reynolds number ranging from $4{\times}10^3\;to\;8{\times}10^3$. Pressure distributions over a cylinder surface are measured and flow visualizations are carried out by smoke wire method. Flow visualizations confirm that ion wind affects significantly the wake structure behind a circular cylinder and pressure drag could be dramatically reduced by the superimposing ion wind.

  • PDF

Multicore Flow Processor with Wire-Speed Flow Admission Control

  • Doo, Kyeong-Hwan;Yoon, Bin-Yeong;Lee, Bhum-Cheol;Lee, Soon-Seok;Han, Man Soo;Kim, Whan-Woo
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.827-837
    • /
    • 2012
  • We propose a flow admission control (FAC) for setting up a wire-speed connection for new flows based on their negotiated bandwidth. It also terminates a flow that does not have a packet transmitted within a certain period determined by the users. The FAC can be used to provide a reliable transmission of user datagram and transmission control protocol applications. If the period of flows can be set to a short time period, we can monitor active flows that carry a packet over networks during the flow period. Such powerful flow management can also be applied to security systems to detect a denial-of-service attack. We implement a network processor called a flow management network processor (FMNP), which is the second generation of the device that supports FAC. It has forty reduced instruction set computer core processors optimized for packet processing. It is fabricated in 65-nm CMOS technology and has a 40-Gbps process performance. We prove that a flow router equipped with an FMNP is better than legacy systems in terms of throughput and packet loss.

피동적 유체기구의 유동 조절 특성에 관한 실험 (An Experiment on the Flow Control Characteristics of a Passive Fluidic Device)

  • 서정식;송철화;조석;정문기;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

압전구동 능동형 체크밸브를 이용한 고출력 마이크로펌프 (A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators)

  • 강정호
    • 한국기계가공학회지
    • /
    • 제4권4호
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a novel high power micropump using active check valves in place of conventional passive check valves employed at the inlet and outlet ports is presented. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. A prototype micropump having an effective size of $17mm{\times}8mm{\times}11mm$ is fabricated. Frequency-dependent flow rate characteristics, bi-directional flow characteristics and load characteristics are experimentally investigated using a timing control method for valve closing motion. From the obtained experimental results, it is ascertained that optimal values of the phase shift compared to the voltage to drive pump chamber are $15^{\circ}$ for inlet check valve and $195^{\circ}$ for outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with an effective size of $10mm{\times}10mm{\times}10mm$ is fabricated and the basic characteristics are experimentally investigated.

  • PDF

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.